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ADVANCED NETWORKING AND DISTRIBUTED SYSTEMS
Defense Advanced Research Projects Agency

Annual Technical Report

May 30, 1993

This Yearly Technical Report covers research carried out on the Advanced Networking and Dis-
tributed Systems Contract at UCLA under DARPA Contract Number MDA 972-91-J-1011 cov-
ering the period from June 1, 1991 through May 30, 1992. Under this contract we have the fol-
lowing statement of work comprising five tasks:

STATEMENT OF WORK

Topic A: High Speed Networking
Task Al: Fast Packet Switching Using Multistage Interconnection Networks

We propose to investigate the performance of a variety of Multistage Interconnection Networks
such as the Starlite network. We will develop analytical models to evaluate the throughput and
response time of the overall traffic in the case of uniform traffic as well as certain forms of hot
spot traffic. We will also evaluate the behavior of Message Combining to eliminate the effects of
hot spots. A transformation and superposition method is being developed to be used with the
analytical model to evaluate any given general traffic pattern (e.g., multiple hot spots). A delay
model analysis comparing the discarding switch and the blocking switch will also be developed.
We also propose to study a structured buffered pool scheme to prevent normal traffic from being
blocked by the saturated tree caused by hot spot traffic.

Task A2: Analysis Of Competing Lightwave Networks

The use of Wavelength Division Multiple Access (WDMA) optical switching for high-speed
packet networks is a predictable development in the evolution of fast packet switching. We pro-
pose to evaluate the behavior of single-hop WDMA optical switching, using agile receiver
filters. Whereas our main thrust will be on these single-hop structures, we will also look at
multi-hop access using fixed filters. We will compare the response time, blocking and
throughput for each.

The views and conclusions contained in this document are those of the authors and should not be
interpreted as necessarily representing the official policies, either expressed or implied, of the
Defense Advanced Research Projects Agency or the United States Government.




TOPIC B: ARCHITECTURE AND PARALLEL PROCESSING /
Task B1: Performance Of Boolean n-Cube Interconnection Networks

We propose to evaluate the performance of Boolean n-cube interconnection networks for paral-
lel processing systems. The focus will be on data communication issues rather than on process-
ing issues. By exploiting the homogeneity property of Boolean n-cube interconnection networks,
we can design non-blocking routing algorithms with limited size buffers. A technique called re-
ferral is used to guarantee that every node accepts all the messages transmitted from its neigh-
bors. This type of routing algorithm is critical in any implementation. Store-and-forward is one
such routing algorithm. In this scheme, time is divided into cycles to which the network is syn-
chronized. In each cycle every node simultaneously transmits some of its stored messages to its
neighbors. An analytical model will be developed to predict the network performance under dif-
ferent traffic patterns. We also intend to design an intelligent routing algorithm to improve the
performance. Another routing scheme to consider is a modified version of virtual cut-through.
Virtual cut-through is a scheme such that when a message arrives at an intermediate node and its
selected outgoing channel is free, then the message is sent to the adjacent node before it is com-
pletely received at this intermediate node. Therefore, the delay due to unnecessary buffering in
front of an idle channel is avoided. Modified virtual cut-through is also a non-blocking algo-
rithm. We will investigate the (positive or negative) effect of adding additional buffers to a node
in this case. We are further interested in non-uniform traffic problems in Boolean n-cube net-
works.

We also propose to study the performance of these networks in a hostile and/or unreliable en-
vironment. In this environment, nodes and links may disappear and also unreliable (i.e., noisy)
transmissions may occur.

Task B2: Distributed Simulation

Parallel asynchronous simulation methods (such as Time Warp) offer an optimistic alternative to
synchronous conservative approaches to distributed simulation. We propose to evaluate the
speedup of P processors conducting a parallel asynchronous simulation using analytic and simu-
lation tools. We already have an exact solution for the case of two processors (P=2). Also, we
have upper bounds on the best one can do by letting the P processors run ahead of each other as
compared to forcing them to synchronize at every step. We are interested in extending the results
to P processors and to include the effect of queued messages. Furthermore, we propose to inves-
tigate the use of the linear Poisson process as a model for these systems.

Task B3: A New Model Of Load Sharing

We are interested in studying the behavior of interacting processes which gobble up processing
resources in their neighborhood. In particular, if we begin with a one-dimensional world, we can
place processes on a ring, where there is a quantity of processing power distributed uniformly
around the ring. A process requires a changing amount of processing capacity. As its needs in-
crease, the process attempts to grow in both directions along the ring until it either has enough
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capacity, or it bumps into another process moving in its direction, in which case they both stop
moving toward each other. As time PTogresses, a process may or may not have all the capacity it
needs. The object is to study the response time of jobs represented by such processes in a limit-
ed resource, competitive environment. Clearly, this model extends to higher dimensions, and we
propose to study the case where processors are distributed over a multi-dimensional hypersphere.
The effect of distributed load sharing in this environment will be evaluated.

Accomplishments for this Period

During we have graduated 1 Ph.D. student, have had 9 papers published, 2 papers accepted and 2
papers submitted to the professional literature. Progress continues to be made in our stated
goals.

We have encountered no obstacles to our research and have made some major contributions in
new areas as well as in extensions of previous work on this grant.

We have developed some important results in the area of parallel processing systems. In particu-

lar, we established a metric which allows us to model the behavior of programs in a way which
 identifies the optimum number of processors one should assign to a job. This has led to a gen-
eralization of Amdahl’s Law as well as a simple rule that specifies the optimum number of pro-
cessors. One paper, "On Parallel Processing Systems: Amdahl’s Law Generalized and Some
Results on Optimal Design” by Kleinrock and Huang, which is attached to this report, addresses
the optimization problem in the case where any processors that go idle in the course of the com-
putation are not allowed to be temporarily reassigned to other jobs waiting in the queue. In
another paper (also attached), "Performance Evaluation of Dynamic Sharing of Processors in
Two-Stage Parallel Processing Systems" by Huang and Kleinrock does allow this reuse of idle
processors by waiting jobs.

We had earlier reported on our results for TIme-Warp (optimistic) Simulation methods. A relat-
ed study, represented by the attached paper entitled "The Virtual Time Data-Parallel Machine"
by Shen and Kleinrock, evaluated the performance of aggressive processing of ready tasks at the
instruction level. This approach shows significant increases in performance over the synchron-
ized approach to instruction execution.

A universal result was established in the attached paper, "Depth- First Heuristic Search on a
SIMD Machine" by Powley, Ferguson and Korf. This result determined the optimum times
when a SIMD processing system should do load balancing.

In many of our investigations, we continue to encounter the issue of how to use processing
power that has temporarily become available. We address the gains to be had in this case direct-
ly in the attached paper, "Collecting Unused Processing Capacity: An Analysis of Transient Dis-
tributed Systems" by Kleinrock and Korfhage. We determine the response time of a job when it
has available a randomly changing number of processors that cooperate in its execution.




Our work in high speed networking with fiber optics continues to produce valuable results.
Indeed, we have established the performance limits of an ideal fiber-optic wave-length-division
switch as a function of the number of tunable and fixed transmitters and receivers. This work is
reported in the attached paper, "Performance Analysis of Single-Hop Wavelength Division Mul-
tiple Access Networks" by Lu ad Kleinrock.

Below we list our publications for this period. Progress continues along a number of fronts, and
we are beginning to study the performance of multi-hop, multi-channel wireless communication
systems in a mobile environment, as well as adaptive and self-regulating automata in a loosely
coupled environment.
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The Virtual-Time Data-Parallel Machine

Shioupyn Shen and Leonard Kleinrock

Computer Science Department
University of California, Los Angeles
Los Angeles, CA 90024-1596

Abstract

We propose the “Virtual-Time Data-Parallel Ma-
chine” to execute SIMD (Single Instruction Multiple
Data) programs asynchronously. We first illustrate
how asynchronous execution is more efficient than syn-
chronous execution. For a simple model, we show that
asynchronous execution outperforms synchronous ex-
ecution roughly by a factor of (In N), where N is the
number of processors in the system. We then explore
how to execute SIMD programs asynchronously with-
out violating the SIMD semantics. We design a FIFO
priority cache, one for each processing element, to
record the recent history of all variables. The cache,
which is stacked between the processor and the mem-
ory, supports asynchronous execution in hardware effi-
ciently and preserves the SIMD semantics of the soft-
ware transparently. Analysis and simulation results
indicate that the Virtual-Time Data-Parallel Machine
can achieve linear speed-up for computation intensive
data-parallel programs when the number of processors
is large.

1 Introduction

For the past twenty years, solid state technology has
been much more successful in reducing the cost of
VLSI chips than in increasing the peak speed of ECL
circuits. As a direct result, the architectural superi-
ority of supercomputers is vanishing because we can
easily implement most of the advanced features of su-
percomputers on a single chip!. The performance gap
between the fastest processor (in terms of MIPS) and
the most cost-effective processor (in terms of MiPs/$)
is diminishing rapidly. In the future, the key to su-
percomputing will not be the high speed of a single
processor; instead, it will be the high degree of paral-
lelism. ‘

The difficulties of parallel processing are two-fold.
The first problem is that the computational model is
hard to use (for asynchronous execution) and the sec-
ond problem is that the hardware efficiency is poor (for
synchronous execution). We propose the “Virtual-
Time Data-Parallel Machine” to solve both problems

IThere are approximately three million transistors in an Intel
80586 microprocessor but only two million transistors in a CRAY-1
supercomputer.

0-8186-2772-7/92 $3.00 © 1992 IEEE
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at once. The concept of this machine is derived from
“The Connection Machine” [4] and “Virtual Time” [6].

The Connection Machine introduced the data-
parallel computational model [5]. The SIMD seman-
tics of the data-parullel model make it easy to develop
parallel programs and make it capable of expressing
fine-grain parallelism. Though the Connection Ma-
chine achieves significant speed-up for a large number
of processors, hardware efficiency may be poor because
of its requirement for synchronous execution.

Virtual Time introduced the “Time Warp” synchro-
nization mechanism for parallel discrete event simu-
lation [7). The optimistic approach of Time Warp
eliminates unnecessary blocking, and therefore makes
better use of the hardware. However, it is hard to
generalize Virtual Time to other paradigms of parallel
processing.

We suggest the use of Time Warp to execute data-
parallel programs asynchronously in hopes of exploit-
ing more parallelism and obtaining better efficiency.
By performance modeling, we show that the efficiency
(i.e., the sustained speed over the raw speed) of the
system is asymptotically 40% for a large number of
processors; this is a significant improvement over the
traditional approach.

The organization of this paper is as follows: Sec-
tion 2 provides the motivation, Section 3 explores the
key concept, Section 4 addresses performance model-
ing, Section 5 describes the hardware support, Sec-
tion 6 discusses the extensions, and the last section
concludes the paper.

2 Motivation — The Interconnection
Network Bottleneck

The data-parallel approach has been very successful in
solving or avoiding many of the technical difficulties
of parallel processing. ’

Data-parallel computers would be the obvious
champion in the parallel processing arena if the in-
terconnection network were not the bottleneck.

The performance of the data-parallel approach is
more sensitive to the interconnection network than
that of the other approaches because of its SIMD se-
mantics. Even though all processors start executing
the same instruction simultaneously, they seldom fin-
ish this instruction together for many reasons. For
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Figure 1: A hypothetical example of remote access
time distribution.

example, the access of remote operands (i.e., variables
on other processing elements) may take vastly different
amounts of time due to network contention and block-
ing. As a result, the execution time of an instruction
varies among the processors.

Figure 1 shows a hypothetical example of the re-
mote access time distribution, where f(t) and F(t) are
the probability density function and probability distri-
bution function of the remote access time, respectively.
Though the remote access time distributions for vari-
ous interconnection networks are different, they have
several characteristics in common — they have large
mean and variance, and more importantly, their prob-
ability density functions have long, tiny tails. The
long tiny tail has little influence on the mean remote
access time because it is so tiny. However, it is the
long (though tiny) tail that drives the performance
down.

The synchronous execution of SIMD programs
forces a processor which finishes the instruction early
wait until all processors finish this instruction. There-
fore, what really counts is the longest execution time
(in other words, the worst case in remote access time)
across all processors. The maximum value of N inde-
pendent samples is approximately F1(1 - —}v), where

F~1(t) is the inverse function of F(t). For large N,
the above term is determined by the long, tiny tail of
f(t) as shown in Fig. 2.

In our experience and that of the others, the critical
bottleneck of data-parallel computing is the intercon-
nection network. Even though the bandwidth of the
interconnection network is large, we cannot justify the
cost of providing sufficient bandwidth to reduce the
maximum remote access time for random communica-
tion patterns. We would like to know how good the
performance will be if we smooth out the variation of
the remote access time. If the performance is very
good, we also would like to figure out how to do it at
acceptable cost.
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Figure 2: The longest remote access time for N pro-
cessors is F~}(1 — %), which is mainly determined by
the long tiny tail of the probability density function

f@®).

First, we show that the system can achieve linear
speed-up (constant efficiency) for a large number of
processors. Second, we propose a very cost-effective
solution (asynchronous execution) to reduce the sus-
ceptibility to the variation of remote access time with-
out modifying the interconnection network. Our ap-
proach is to attach minimal hardware support to every
processing element to “neutralize” the network haz-
ards, instead of resorting to an expensive “upgrade” of
the interconnection network. We can achieve roughly
the same performance as if the remote access time
is constant but with twice the mean. This approach
trades the variance for a larger mean. The above
trade-off is favorable because the major bottleneck is
in the variance instead of the mean, especially for sys-
tems with a large number of processors.

In addition to the remote operand fetch, the actual
computation of the instruction sometimes introduces
large variations into the instruction execution time
as well. Conditional enabling/disabling is a common
practice in data-parallel programming. Even though
it takes constant amount of time for the enabled pro-
cessors to execute the instruction, collectively speak-
ing, the instruction execution time varies because it
takes no time for the disabled processors to skip the
instruction. If the disabling probability is high?, then
the execution time varies a lot. In this paper, we use
the generic term “instruction execution time”, which
may refer to either the remote access time or the com-
putation time or both.

2For example, a tree-reduction operation [5] of size N takes
(logy N) iterations for a total of (N — 1) operations. The disabling
probability is as high as (1 — B{W).




3 The Key Concept — Asynchronous
SIMD

The Connection Machine is a typical example of the
traditional data-parallel machine, which has the fol-
lowing characteristics ~ (i) SIMD, (ii) distributed
memory, (iii) massive parallelism, and giv) pro-
grammable interconnection. We are perfectly happy
with these properties except the first one — SIMD,
or more precisely, synchronous execution of SIMD
programs. The inefliciency of synchronous execution
comes from unnecessary blocking. Processors that
finish the current instruction early are blocked un-
til all processors finish this instruction, even though
the operands needed to execute the next instruction
may be available. As we know, synchronous execu-
tion is a direct way to enforce the “SIMD semantics”,
but what really matters is the SIMD semantics itself,
rather than the synchronous execution.

SIMD semantics is in fact a kind of causality con-
straint, which is explained as follows. The execu-
tion of the i-th instruction (an event “scheduled” at
“simulation” time i) depends on the execution of the
(--1)-th instruction (an event scheduled at simula-
tion time i-1). The sequence count of the instruc-
tion stream is analogous to the simulation time, which
specifies when an event should happen, in contrast to
“real-time” when the event does happen. The data-
dependency constraint of the SIMD semantics is thus
equivalent to the causality constraint of parallel dis-
crete event simulation (PDES).

The synchronous execution of SIMD programs is es-
sentially the time-stepped execution of PDES, which
is considered an inefficient implementation of PDES.
On the other hand, the optimistic approach of Vir-
tual Time employs periodic state-saving so that pro-
cessors have more freedom to go ahead instead of be-
ing blocked unnecessarily. The Virtual-Time Data-
Paralle] Machine takes a similar (but not identical)
approach — the execution of the next instruction can
proceed independently of the progress on other proces-
sors as long as its own data dependencies are satisfied
and its current state is properly saved.

Figure 3 illustrates how asynchronous execution of
SIMD programs is far more efficient than the con-
ventional synchronous execution. In a task graph,
nodes correspond to tasks (instructions) and links cor-
respond to causality constraints (data dependencies).
Figure 3.a shows the intrinsic data dependencies of an
example program, which ignores all artifacts due to
the execution model. When synchronous execution is
enforced, it is equivalent to adding more links to the
task graph such that every task depends on all the
tasks one row above it. Figure 3.b shows the large
number of additional data dependencies of the pro-
gram caused by the requirements of the synchronous
execution model.

We know that adding/removing links to a task
graph decreases/increases the parallelism of the task
graph, respectively. The Virtual-Time Data-Parallel
Machine promotes asynchronous execution by remov-
ing those extra links associated with synchronous exe-
cution (i.e., to achieve better performance) while pre-

Processor
0 1 2 3
0

Instruction

2

a) Data Dependency of the Program

b) Data Dependency of Synchronous Execution

Figure 3: The task graph representation of data de-
pendencies.

serving the original data dependencies (i.e., without
sacrificing the semantics). ' :

4 Performance Modeling — Partial
Synchronization

A simple model of the Virtual-Time Data-Paralle] Ma-
chine is the “partial synchronization” model [1], in
contrast to “total synchronization” model (i.e., barrier
synchronization). The model is as follows. The SIMD
machine consists of N homogeneous processors, i.e.,
every processor has the same processing power and
executes the same instruction stream such that the
behavior of every processor is statistically equivalent.
The task graph (Fig. 4) is an oo by N matrix, one col-
umn for each processor. Each task depends on a set
of tasks one row above it. Let the size of this set be
A, which is the number of immediate ancestors of this
task. If A= N for all tasks, then it is total synchro-
nization; otherwise, it is partial synchronization. We
are interested in the case where A is a small number,

31f the tasks correspond to instructions, then the value of A is
analogous to the number of operands. of an assembly instruction,
which is usually small.
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Figuré 4: A snapshot of a task graph in execution.

For partial synchronization, the instructions in ex-
ecution spread out in virtual-time*. However, this dis-
persion is confined due to the data dependency con-
straints. In order to describe the dynamic behavior
of the system, we introduce the following terms (refer
to Fig. 4). The global virtual-time (GVT) of the sys-
tem is defined to be the minimum virtual-time of all
processors, i.e.,

GVT £ min {virtual-time} 1
Vproc.

The relative virtual-time (rvt) of an instruction (or a

processor) is defined to be the difference between its

virtual-time and the GVT, i.e.,

rvt 2 virtual-time — GVT

(2)

The dispersion function describes how processors scat-
ter in virtual-time, i.e.,

(3)
which' can be interpreted as the probability that the
rvt of a (tagged) processor is ¢ (averaged over a long
period of real-time), or as the distribution of proces-
sors in virtual-time (}?t some real-time instant). Fig-
ure 4 shows a snapshot of the system, and Figure 5
illustrates its dynamic behavior.

dispersion(i) 2 Prob(rvt = i

- 4In this paper, “virtual-time” and “simulation-time” are used
interchangeably, as are “instruction” and “task”.

49

We make the following assumptions for the purpose
of performance modeling:

1. The execution time of tasks is exponentially dis-
tributed.

2. The number of immediate ancestors (A) is exactly
two.

3. One ancestor is the preceding task on the same
processor, and the other ancestor is uniformly dis-
tributed among the tasks in the preceding row."

Though these assumptions are not particularly real-
istic, they are simple enough to capture some funda-
mental insight as to how asynchronous execution out-
performs synchronous execution.

We are interested in the following performance mea-
sures:

Speed-Up:
Speed-Up £

execution time with a single processor 4)
execution time with N processors

Efficiency: Soced U
peed-Up

- )

Efficiency =

Efficiency-Gain:

Efficiency Gain =
efficiency of asynchronous execution (6)

efficiency of synchronous execution

Figure 6 shows the speed-up and efficiency of syn-
chronous execution from analysis [2]. The efficiency of
synchronous execution drops (to zero) as the number
of processors increases. Figure 7 shows the speed-up
and efficiency of asynchronous execution as obtained
from simulation®. Analytical results (8] show that the
asymptotic efficiency for a large number of processors
is approximately 40%. Figure 8 shows that the ef-
ficiency gain is proportional to the logarithm of the
number of processors. From this figure we see the mo-
tivation for considering asynchronous execution.

We now address the scalability of the Virtual-Time
Data-Parallel Machine. The traditional definition of
scalability is with respect to the speed-up of running
the same program on an increasing number of pro-
cessors. This definition is not directly applicable to
data-parallel machines where the number of proces-
sors is on the same order as the intrinsic parallelism
of the program. When the number of processors in-
creases, the problem size must increase proportionally
so that the intrinsic parallelism increases proportion-
ally as well. If a system scales up well, the execution
time is relatively constant.

5Analyses are also available (8] for an upper-bound, a lower
bound, and an approximation to the efficiency of asynchronous
execution.
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Figure 6: Speed-up and efficiency of synchronous ex-
ecution.

An architecture simulator has been developed to
run “real” data-parallel programs on the Virtual-Time
Data-Parallel Machine to illustrate its superb scalabil-
ity. The main assumption® made in the simulator is
the randomness in instruction execution time (in fact,
the remote access time). Figure 9 shows the time re-

quired to solve a Laplace’s equation asynchronously

versus synchronously. This diagram reveals that asyn-

SWe also make other assumptions on the number of cycles for
integer and floating-point operations. As long as the number of
cycles for computation is less than that for communication, the
simulation results are not sensitive to these assumptions.

In this figure,
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Figure 7: Speed-up and efficiency of asynchronous ex-
ecution.

‘chronous execution scales up well as shown by the
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almost constant execution time, while the execution
time for synchronous execution increases. The above
argument does not mean that asynchronous execution
is more favorable than synchronous execution in solv-
ing partial differential equations since, had the instruc-
tion execution time been constant, as if, with such
equations, then the synchronous and asynchronous ap-
proaches would have behaved similarly.. However, it
indicates that asynchronous execution is capable of
smoothing out the variations of instruction execution
time. ’
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Figure 8: The efficiency gain — asynchronous over syn—
chronous.

5 Hardware Support — The FIFO Pri-
ority Cache

During asynchronous execution, processors are al-
lowed to spread out at different virtual-times. Con-
sider the case in which one processor at a smaller
virtual-time (say, ) sends a memory request’ to an-
other processor at a larger virtual-time (j, where
j > 14). The time (virtual-time) of the request is cur-
rent to the former processor but previous to the latter
processor. The requested value has actually been gen-
erated in a previous instruction (before 7) on the latter
processor, and is subject to being overwritten by in-
structions between ¢ and (j-1). In order to prevent
overwriting useful data, every processor must save all
previous values of its variables (i.e., the memory “his-
tory”) back to GVT(since no processor has a virtual-
time earlier than GVT, no values earlier than GVTwill be
requested in the future). For practical reasons, there
is a physical limit on the size of the memory history,
say K. If a processor goes so fast that it is K instruc-
tions ahead of GVT, it must be temporarily suspended
because it has used up its memory history. Analysis
[8] shows that if K is greater than (In N), the above
situation rarely occurs and the performance hardly de-
grades due to the limited size of memory history.?

Memory history is so important and so frequently
used that it deserves special hardware support. We
have designed a “FIFQO priority cache” (which imple-
ments the incremental backup algorithm) for the mem-
ory history (one cache per processor) with the follow-
ing characteristics. , :

FIFO Queueing: Write requests are not executed
immediately; instead, they are pushed into a

"Memory requests are time-stamped to unambiguously specify
the requested values.

$What a ¢oincidence! (In N) happens to be the performance gain
as well.
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Figure 9: The execution time of a data-parallel pro-
gram when the number of processors increases with
the problem size.

FIFO queue (of size K). If the queue is full, the
oldest pending write request (i.e., the one with
the earliest virtual-time) is popped out of the
FIFO queue and then sent to the main memory
(i.e., to update the main memory).

Associative Search: For every read request whose
virtual-time is less than or equal to the program
counter of the processor, we conduct an associa-
tive search (like a cache memory) in the queue
for hits, where a hit is any pending write request
in the queue with matching address and earlier
virtual-time.

Priority Arbitration: If there is more than one hit,
we choose the latest hit, i.e., the one with the
largest virtual-time. Priority arbitration {(e.g.,
choosing the latest hit) can be implemented by
a priority encoder/decoder pair. If there is no
hit (i.e., a cache miss), then we consult the main
memory because the requested value is stored in
the main memory.

Related research on the space-time memory can be
found in (3] and g8]

Synchronous SIMD machines can hardly benefit
from the cache memory because a cache miss for one
processor is aggravated to a cache miss for the whole
system. Asynchronous execution allows the system to
take full advantage of the cache memory technology to
resolve the speed discrepancy between the CPU and
the main memory. A small FIFO priority cache not
only supports the memory history, but also accelerates
memory references.

6 Extensions — Two-Phase Write

Even though we can smooth out the variations of the
remote access time, the interconnection network may




still be the performance bottleneck (however, the bot-
tleneck is less severe than before). The problem resides
in the mismatch of local access time and remote ac-
cess time. The technology is such that the speed of
the processor (and the memory) has improved quickly
but the speed (in terms of latency instead of through-
put) of the interconnection network has improved at
a much slower rate. As a result, the remote access
time is tens to one hundred times larger than the lo-
cal access time, and the mismatch will become even
worse in the future. The processors spend most of
their time waiting for remote operands because the ac-
tual computation or the local references can be done
in a flash. If we could pipeline the instruction exe-
cution, the throughput of the system would improve
dramatically. However, the variation of remote access
time makes pipelining difficult if not impossible.

Traditional pipelining is “synchronous” pipelin-
ing in the sense that timing information is known
in advance so that a reservation table synchronizes
the resource allocation. Data-flow is “asynchronous”
pipelining in the sense that only the data-dependency
counts and timing information is either unknown or
irrelevant. Since this paper is promoting the asyn-
chronity, whenever the “synchronous” approach fails,
try its “asynchronous” counterpart.

The sequential semantics of SIMD programs adds
an implicit ancestor to every instruction on every pro-
cessor — the preceding instruction on each of these pro-
cessors. However, we observe that the result of an in-
struction may not be used immediately by the next
instruction. If the current instruction is blocked %e.g.,
waiting for a remote operand), the execution of the
next instruction can proceed without waiting for the
current instruction to finish. Before the next instruc-
tion starts executing, the processor must schedule the
execution of the current instruction and invalidate the
variables that may be modified by the current instruc-
tion. Such a problem was addressed many years ago
by the Tomasulo algorithm [9]. This algorithm, used
by the floating point unit of the IBM 360/91, con-
verts sequential computation into data-flow computa-
tion within a small sliding window of instructions.

The main idea is to separate a write operation of
a variable into two phases — the logical write and the
physical write. The logical write is executed first be-
fore the content of the write operation is available; it
invalidates the variable and assigns a unique identi-
fier to the content of the write operation. From then
on, all read requests to that variable (before the vari-
able is overwritten) are transformed to waiting for that
identifier. The next instruction can proceed after the
logical write without waiting for the physical write.
The physical write is executed when the content of
the variable becomes available; it is sent to every pro-
cessor waiting for the corresponding identifier. Once
we adopt the two-phase write, then head-of-the-line
blocking, which enforces sequential execution, is elim-
inated; at the same time, the sequential semantics
are preserved. Thus we see that the techniques used
to compensate for the long pipeline stages of floating
point arithmetic units in sequential machine may now
be used to compensate for the long (network) delays
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due to remote access in parallel processing systems.

The two-phase write can be easily implemented in
the memory history by adding an extra busy bit to ev-
ery outstanding update. A logical write sets the busy
bit to one, representing the fact that an update is tak-
ing place, and the content is not available. A physical
write resets the busy bit to zero, representing the fact
that the data in this update is available. References
to a busy update receive the time-stamped address of
the update (which serves as the unique identifier), and
then get blocked. When a physical write is executed,
all references to the matching identifier are unblocked.

With the two-phase write, the Virtual-Time Data-
Parallel Machine converts the SIMD computation
from control-flow to data-flow (within a small sliding
window of neighboring instructions). Data-flow execu-
tion recovers more threads of execution than control-
flow, which increases the concurrency and improves
the efficiency of the Virtual-Time Data-Parallel Ma-
chine.

7 Conclusions

Long and unpredictable remote access latency is often
the performance bottleneck of massively parallel com-
puting. Asynchronous execution of the Virtual-Time
Data-Parallel Machine provides one way to relieve this
bottleneck. We have proposed some minimal modi-
fications to the architecture of the traditional data-
parallel machine (e.g., the CM-2), which converts the
way it executes SIMD programs from synchronous to
asynchronous. We have provided a basic foundation
for the understanding of both why and how to im-
prove the efficiency of SIMD programs by allowing
asynchronous execution.

Asynchronous execution makes the machine more
MIMD (Multiple Instruction Multiple Data)-like. It is
nevertheless a SIMD machine from the programmer’s
point of view! A more detailed discussion of these
ideas and a comprehensive quantitative analysis of this
machine can be found in (8].
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Abstract—In this paper, we first study the performance of job
scheduling in a large parallel processing system where a job is
modeled as a concatenation of two stages which must be processed
in sequence. We denote Pi as the number of processors required
by stage i and denote P as the total number of processors
in the system. The service time requirement of stage i, given
the required Pi processors, is exponentially distributed with
mean 1/y;. Hence, a job can be fully described by a quadruple
(Py, P2, p11, pt2). Three service disciplines which can fully utilize
all processors in the system are studied in this paper.

We first consider a large parallel computing system where
Max(P, ) > P >> 1 and Max(P,, ) >> Min(P, P,).
For such systems, exact expressions for the mean system delay
are obtained for various job models and disciplines. Our results
show that the priority should be given to jobs working on the
stage which requires fewer processors. We then relax the large
parallel system (i.e., P >> 1) condition to obtain the mean system
time for two job models when the priority is given to the second
stage. Moreover, a Scale-up Rule is introduced to obtain the
approximated delay performance when the system provides more
processors than the maximum number of processors required by
both stages (i.e., P > Max(P;, P,)). Lastly, an approximation
model is given for jobs with more than two stages.

Index Terms—High-concurrency stage, low-concurrency stage,
parallel processing system, processor sharing, Scale-up rule.

I. INTRODUCTION

N this paper, we first consider a parallel computing system
in which jobs are composed of two stages which must be
processed in sequence. In each stage, up to a given maximum
number of processors can be used concurrently and the number
of processors required by different stages need not be the same.
For instance, we can view a job as a program and a stage in a
job as a procedure in the program where each procedure can
be executed using a certain amount of processors concurrently.
The number of processors required by a procedure depends on
how many processors it can use in its algorithm. We denote
P; as the number of processors required by stage : and we
denote P to be the total number of processors in the system.
The service time of stage ¢ given the required P; processors
is exponentially distributed with mean 1/y;. Hence, a job can
be fully described by a quadruple (Py, Py, pu1, p12). A general
concept of this kind of job model was first proposed in [11].
Manuscript received July 19, 1990; revised June 3, 1991 and September 14,
1991. This work was supported by the Defense Advanced Research Projects
Agency, Department of Defense, under Contracts MDA 903-87-C-0064 and
MDA 903-87-0663.
J.-H. Huang is with the Department of Computer Science and Information
Engineering, National Taiwan University, Taipei, Taiwan.
L. Kleinrock is with the Computer Science Department, University of

California, Los Angeles, Los Angeles, CA 90024.
IEEE Log Number 9205852.

For easier notation, we denote the low-concurrency stage
as the stage where the number of processors required equals
Min(P;, P,). Similarly, we denote the high-concurrency stage
as the stage where the number of processors required equals
Max(Py, P»). Hence, the job models considered in this paper
may be either 1) the low-concurrency stage precedes the high-
concurrency stage or 2) the high-concurrency stage precedes
the low-concurrency stage. These two job models are denoted
as the LH (Low-High) job model and HL (High-Low) job
model, respectively.

Other than considering the characteristics of jobs, we pro-
pose three service disciplines for such systems. The basic
principle of the service disciplines studied in this paper is
to fully utilize all processors such that we do not allow the
system to have idle processors while there are jobs waiting in
the queue. To achieve this, the system has to share processors
among jobs according to a service discipline. Two of the
disciplines studied in this paper use priority schemes which
assign the priority to a job according to which stage the job
is working on. The third discipline follows a straight First
Come First Serve rule. Hence the disciplines studied are 1)
priority given to jobs working on stage 1 with preemption, 2)
priority given to jobs working on stage 2 with preemption, and
3) FCFS without preemption. More details about job models
and service disciplines are given in the following section.

For the 2-stage job model, we first find the mean system time
of LH and HL job models under different kinds of disciplines.
From the obtained mean system time analysis, we then find
the best service discipline to minimize the mean system time
for both LH and HL job models. These results shed light
on designing the operating system for a parallel computing
system.

The paper is organized as follows. In Section II, we give
a detailed description to the job models and various service
disciplines. In Section III, we assume the number of processors
required by the low-concurrency stage is far fewer than
that of the high-concurrency stage (i.e., Max(Py, P2) >>
Min(Py, P2)) and we further assume the number of processors
in the system is no more than the number of processors re-
quired by the high-concurrency stage (i.e., P < Ma,x(Pf, Py)).
The performance of various combinations of job models and
service disciplines are given and a comparison to find the best
service discipline is also provided. In Section IV, we drop the
Max(P1, P;) >> Min(Py, P;) condition and find the delay
performance using the discipline which gives the priority to
jobs working on stage 2 with preemption. In Section V, we
propose a Scale-up Rule which gives a good approximation

1045-9219/93$03.00 © 1993 IEEE
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result of the mean system time when the number of processors
in the system is more than the number of processors required
by the high-concurrency stage (i.e., P > Max(P, Ps)).
Section VI contains an approximation model for jobs with
more than two stages. The concluding remarks are given in
Section VIL

II. MODEL DESCRIPTION AND ASSUMPTIONS

In our model, jobs arrive to the system according to a
Poisson process with rate \. Whenever a job in a stage requires
more processors than the system currently can provide, this
job simply uses all the processors available to it with an
appropriately elongated stage service time such that the work

done for that stage remains unchanged. That is, the service

time for that stage will still be exponentially distributed but
with a larger mean. For example, if a job in a stage can use
10 processors for one second of work and if there are only 5
processors available, it will use these 5 processors and require
two seconds of work to complete its work. This elongated
stage service time with 5 processors ensures the conservation
of the work required in that stage. As mentioned earlier, this
is to fully utilize all the processors in the system. An example
of an LH job model is shown in Fig. 1(a) and an HL job
model is shown in Fig. 1(b) where Max(Py, P»)/Min(P;, P5)
equals m.

The first two service disciplines considered in this paper
are a version of priority queueing with preemption. If the total
number of processors occupied by higher priority jobs in the
system is less than P, those processors which are not needed
by these higher priority jobs are assigned to lower priority jobs.
The assignment of priorities to a job is based upon which stage
the job is currently working on. Hence, when a job finishes
the first stage and advances to the second stage, the priority
ranking of this job will be changed.

For instance, if the priority is assigned to jobs working on
stage 2, then a job advances from stage 1 to stage 2 will gain
a higher priority. Moreover, in cases where P, > P; and jobs
working in stage 2 have higher priorities, a job advances from
stage 1 to stage 2 will achieve a higher priority and will need
more processors to work on stage 2. In this case, this job will
preempt processors from those jobs working on stage 1 until
either it has gained enough processors for stage 2 or there
are no more jobs working on stage 1. Those jobs with all
processors preempted will be pushed back to the head of the
queue waiting for available processors. The third discipline
considered in this paper does not allow processor preemption
and follows a First Come First Serve rule.

Furthermore, for all three disciplines, if there are more than
one job wanting to share processors in the same stage, we will
first satisfy the processor requirement of the first job before
allocating processors to the second job and so on. This process
continues until all processors are allocated to jobs or until
all jobs are satisfied. If there are jobs which do not receive
processors, they stay in the queue of that stage. Hence, the
service discipline for each stage is a FCFS scheme for all
disciplines. The details of the service disciplines follows.

Processor ) Processor
4 4

P2=mPl|~ — — P1=mP2

P1 PZ—————-I
>

ime . Time

= I 4

@ ®)

Fig. 1. LH and HL job models. (a) LH job model. (b) HL job model.

A. Priority Given to Jobs Working on Stage One with Preemption

A job is allowed to receive service as long as there are
available processors in the system following a preemptive
priority service discipline. A job’s priority decreases when it
finishes stage 1 and enters stage 2. Under such a preemptive
priority scheme, when a job enters the system while there
are no available processors in the system, it can preempt
processors from jobs working on stage 2, if there is any, to
start servicing its stage 1.

B. Priority Given to Jobs Working on Stage Two with Preemption

In this discipline, a job’s priority increases when it finishes
stage 1 and enters stage 2. Hence, when a job enters stage 2
and requires more processors than it currently possesses from
stage 1, it can preempt processors from jobs working on
stage 1, if there is any, to start servicing its stage 2.

C. FCFS Discipline without Preemption

The discipline introduced here is a FCFS discipline where
preemption is not allowed. A job is allowed to receive service
as long as there are available processors in the system. Further,
the processors occupied by a job cannot be preempted by any
other jobs. However, if there are processors released by a job,
those jobs already in service which need more processors have
a higher priority than jobs in the queue to occupy the released
processors. A job may release processors by either advancing
from the high-concurrency stage to the low-concurrency stage
or by finishing stage 2 and leaving the system.

III. PERFORMANCE EVALUATION OF DIFFERENT
JoB MODELS UNDER VARIOUS DISCIPLINES

In this section, we consider a large parallel computing
system where Max(Py, P;) > P >> 1 and Max(Py, P2) >>
Min(Py, P;). Before further discussion, we will first examine
the cases when P < Max(Py, P;). When P < Max(Py, P,),
the high-concurrency stage can actually use only P processors,
hence the quadruple job description should be modified. For
instance, if stage 2 is the high-concurrency stage (i.e., Py >
P > Py), then the quadruple (Py, Ps, p1, p2) should be
modified as (Py, P, uy, P/Paps). That is, stage 2 can use all
P processors for an elongated service time. Hence, we will
only consider the case when P = Max(P;, P,) without loss
of generality.
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- To give an example for the job model discussed in this
section, the low-concurrency stage can be regarded as a
serial stage which requires only one processor and the high-
concurrency stage as a parallel stage which can use all
processors in the system. For such a system, job models
shown in Fig. 1(a) and (b) can be approximated as shown in
Fig. 2(a) and (b), respectively since the number of processors
required by the low-concurrency stage is negligible compared
to that required by the high-concurrency stage. For the rest of
this section, we will use these approximated job models for
analysis. It will be shown in Section IV-A and Fig. 6 and when
Max(Py, P;) > 20Min(Py, P,), the delay performance of the
job models shown in Fig. 1 is very close to the job models
shown in Fig. 2, which will be analyzed in this section.

For such a system, the low-concurrency stage requires a neg-
ligible amount of total processors while the high-concurrency
stage requires all P processors in the system. Therefore, if
the high-concurrency stage has a higher priority, then there
can be at most one job working on the high-concurrency stage
since it will occupy all processors in the system. Under such
a circumstance, all other jobs in the system will be forced to
wait in the queue since there are no available processors left.

On the other hand, if the low-concurrency stage has a higher
priority, then all jobs working on the low-concurrency stage
can work concurrently and they will have no effect on jobs
working on the high-concurrency stage because the processors
taken by jobs in the low-concurrency stage are negligible.
That is, in this case, there can be as many jobs working
on the low-concurrency stage and one job working on the
high-concurrency stage at the same time. ‘

In this section, we will give results of the mean system
time of LH and HL job models under various disciplines.
Clearly, there will be six models from a combination of two
job models and three scheduling disciplines. These six models
are classified into three groups in according to the service
disciplines. Note that the formula of infinite server queues are
approximations to the actual system.

A. Priority Given to Jobs Working on Stage One with Preemption

In this section, we give the priority to jobs working on
stage 1. For the two job models, we denote Ty and Ty as
the mean system time for the LH job model and the HL job
model, respectively. These notation will be used throughout
this section.

Theorem 1: For systems with priority given to jobs working
on stage 1 with preemption, the Laplace Transform, Y3 (s),
of the system time of the HL job model is shown at the bottom
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Fig. 2. The approximated LH and HL job models when P = Max(P;,
P32) >> Min(P;, P2). (a) LH job model. (b) HL job model.

Proof: See Appendix A.
Theorem 2: For systems with priority given to jobs working
on stage 1 with preemption,

1 +1 i A
Tory = [+ 1/ ps : i @
L-p #i(1—p1)
1 1/#2
Tyg = — 4 12 3
= T 1= M e ®)

Proof: Equation (2) can easily be derived from (1). To find
T, since stage 1 has higher priority, stage 1 can be regarded
as an M/M/oo system. Further, since jobs in stage 1 occupy
no processors at all, stage 2 can be regarded as an M/M/1
queue. Hence, T7, g can be shown as in (3). Q.E.D.

Note that A/ui(= p1) is the system load for the HL job
model since only stage 1 will contribute workload to the
system. Similarly, A/uo(= p2) is the system load for the LH
job model. These can be seen from (2) and (3).

B. Priority Given to Jobs Working on Stage Two with Preemption

For systems which give priorities to jobs working on stage 2
with preemption, we first derive the z-transform of the number
of jobs in the system as given in the following equation.

H2 — A
ORI )
4

where P(z) is defined as the z-transform of the number of
jobs in the system. The proof of (4) is provided in Appendix B.
From (4), we obtain the following theorem.
Theorem 3: For systems with priority given to stage 2 with
preemption,

P(z) =

H2 —
2

o — Az

of this page where p; equals A/y; and G*(s) is the root of 1/p1 +1/pg
the following quadratic equation: Tim = 11—\ T2 - ©)
2 StHA+m B Torr — 1/p 1
* - — =0. =—V+—. 6
G*(s) 3 G*(s) + 3 0 HL = 6)
2 2
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Proof: From (4), we can easily derive the mean number
of customers in the system for the LH job model and we can
hence prove (5) using Little’s result [12]. Again, to find Ty, is
easy since stage 1 performs like an M/M/1 queue and stage 2
is like an M/M /oo queue. Q.E.D.

C. First Come First Serve Discipline

The performance of First Come First Serve discipline for
the HL job model is the same as when the priority is given to
stage 2 with preemption and the reason follows. Since jobs in
stage 1 possess more processors than they will need in stage 2,
hence whenever a job finishes stage 1 and enters stage 2, it
does not need to ask for more processors than it already
possesses. Actually it will release processors to other jobs.
Hence, all jobs in stage 2 will always have enough processors.
Therefore, the FCFS discipline for the HL job model is the
same as the case when the priority is given to stage 2.

However, for the LH job model, the exact result is not
obtained. Nonetheless, we can easily show that the perfor-
mance is worse than the case when priority is given to
stage 1 with preemption by the following reason. For FCFS
discipline, whenever there is a job in stage 2, new arriving
jobs cannot start receiving service for the low-concurrency
stage since all processors are occupied by old jobs in stage 2.
Hence, these new jobs would have to wait in the queue before
receiving service for the low-concurrency stage. However, if
the discipline used is to give priority to stage 1, then these new
arriving jobs can immediately start receiving service for the
low-concurrency stage and will not have to wait in the queue.
Moreover, jobs in stage 1 do not really occupy processors;
hence, it does not interfere with jobs working on stage 2.
Therefore, the mean system time for the case when priority is
given to stage 1 with preemption for the LH job model is better
than that using the FCFS nonpreemptive service discipline.
Applying the similar argument, we can show that the LH job
model performs better than the case when priority is given to
stage 2 with preemption. From these conclusions, we arrive at
the following results for the FCFS system.

1/ 1
Typ =1 1 7
BEZ TN ™ e @
1/p1 + 1/ p2 1 1/po
—_—— > T > — 4 —— 8
1— A p2 LH pr o 1—=X ®

D. Performance Comparison Among Various Disciplines

Comparing (3), (5), and (8), we find that for LH job models,
the system which gives priority to stage 1 with preemption has
the smallest mean system time. On the other hand, for HL job
models, we find that the system which gives priority to stage 2
with preemption and FCFS without preemption achieve the
smallest average system time by comparing (2), (6), and (7).
From the results derived above, we arrive at the following
conclusions:

1) FCFS nonpreemptive discipline is not the optimal dis-

cipline.

2) The best service discipline depends on job models.

3) For the disciplines considered in this paper, the priority-.
should be given to the low-concurrency stage which
requires fewer processors.

Conclusion 3) above may not seem obvious. As a known
fact, the best service discipline to minimize the mean system
time is to give higher priority to jobs with less remaining
service time if that is known. In our 2-stage job model, jobs
working on stage 2 clearly are closer to completion than jobs
working on stage 1; hence, the priority should be given to
jobs working on stage 2 for both job models. However, from
conclusion 3) stated above, we know that the priority should
be given to stage 1 in the LH job model. This is opposite to
our intuitive reasoning.

The reasons for this can be explained as follows. The prob-
lem of giving the priority to the high-concurrency stage is that
by so doing, whenever there is a job in the high-concurrency
stage, all jobs in the low-concurrency stage will be forced
to wait since all processors are occupied by the job in the
high-concurrency stage. Once all jobs in the high-concurrency
stage finish services, all the processors will be released to
jobs waiting to receive service for the low-concurrency stage.
Since the number of processors required by all jobs working
in the low-concurrency stage is small compared to the number
of processors in the system, therefore, most of the processors
will be idle. It is this waiting time in the low-concurrency
stage and the inefficiency of utilizing processors which causes
the poor performance.

On the other hand, if the priority is given to the low-
concurrency stage, then all jobs in the low-concurrency stage
would not have to wait in any case. Further, jobs in the
high-concurrency stage can also receive service since the
number of processors occupied by jobs in the low-concurrency
stage is negligible. Hence, by giving the priority to the
low-concurrency stage obtains a better delay performance
for all job models. An example is shown in Fig. 3 for
(Py, Po, pi1, 1) = (1,20,1,1) and P = 20. Fig. 3 shows that
the system with priority given to jobs working on stage 1 has
the best performance while the performance of the system with
FCFS discipline is very close to it. In Fig. 3, the mean system
time for the FCFS discipline is obtained by simulations.

This conclusion can be further extended to a 3-stage job
model where a job is composed of a low-concurrency stage
followed by a high-concurrency stage followed by another
low-concurrency stage as shown in Fig. 4. From the results
obtained in Theorems 2 and 3 and by defining ps to be A/us,
we can easily obtain the mean system delay for the following
cases.

Case 1: If the highest priority is given to jobs working on
stage 3, the next priority to jobs working on stage 2, and the
lowest priority to jobs working on stage 1; we have

T U/ 41/ p
LHL = =7~
— P2
Case 2: If the highest priority is given to jobs working on
stage 3, the next priority to jobs working on stage 1, and the
lowest priority to jobs working on stage 2; we have
1/po

Trap =1/m + Tt 1/us.
- p2 .

+1/ps.
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Fig. 3. The comparison for three service disciplines for (Pi, P2, p1,
p2) =(1,20,1,1) and P = 20.
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Fig. 4. A 3-stage job model with one high-concurrency stage and two
low-concurrency stages.

Case 3: If the highest priority is given to jobs working on
stage 1, the next priority to jobs working on stage 2, and the
lowest priority to jobs working on stage 3; we have

1/pa +1/ps A
1=p2 p3(1 = p2)

Note that in Case 1, we give the priority to jobs closer
to completion while in Case 2 the priority is given to jobs
working on stages which require fewer processors. From these
results, we can clearly see that Case 2 has the smallest mean
system time. Hence, our conclusion in this section also works
for 3-stage job models with one high-concurrency stage.

Trar =1/p +

IV. DELAY ANALYSIS BY RELAXING
Max(Py, P;) >> Min(Py, P,) CONDITION

In this section, we relax the Max(Py, P;) >> Min(P;, P»)
condition as required in the previous section. As before, we
define m to be Max(P;, P;)/Min(Py, P;) and denote P as
the total number of processors and assume P = Max(Py, P;),
i.e., the number of processors in the system equals the number
of processors required by the high-concurrency stage. For
cases when P > Max(Py, P,), a good approximation will
be given after the introduction of the Scale-up rule, which
will be described in the following section. In this section, we
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will only consider the discipline which gives the priority to
stage 2 with preemption.

A. The LH Job Model

In this subsection, we consider the situation when the low-
concurrency stage precedes the high-concurrency stage. This
job can be modeled as shown in Fig. 1(a). The difference
between this model and the one given in the previous section
is that in this model there can be at most [m] jobs working
concurrently on the low-concurrency stage if there is no job
working on the high-concurrency stage. As before, if there is
a job working on the high-concurrency stage, all jobs in the
low-concurrency stage will be forced to wait in the queue.

To draw a Markov chain for such a model, since P, = mP;,
we can normalize the number of processors required by stages
by using P, = 1 and P, = P = m without affecting the
result. For example, a job model with P, = 2, P, = 6, and
P = 6 should have the same performance with the job model
with P, = 1, P, = 3, and P = 3. We define p(k, j) to be
the probability that there are & jobs in stage 1 and j jobs in
stage 2 in the system. Since the priority is given to stage 2,
hence whenever j > 0, then all & jobs in stage 1 have to wait
in the queue. Furthermore, all jobs in stage 1 will be paused
whenever j = 1; hence no more job can advance from stage 1
into stage 2. Hence, the value of j canonly be Oor 1. If j = 0
and k < m, then all jobs in stage 1 are in service. If j = 0
and k > m, then there are m jobs working on stage 1 and the
other k — m jobs are waiting in the queue. Hence, the Markov
chain of this model can be shown in Fig. 5.

Note that the overall system load can be expressed as
A(mpy + p2)/myus o, hence the condition for a stable system
is A < mpypo/(mps + u2). We obtain the z-transform of the
number of jobs in the system in the following equations.

For the LH job model as shown in Fig. 1(a), the 2-transform
of the number of jobs in the system is

_ M2

P(z) = =A%z + mpypp — mAp1z = Migz + A222
m—1
Z (m — k)p(k,0)z* ®
k=0

where p(k,0) for 0 < k < m — 1 can be obtained from (10)
to (13). -

- _ mpgpy — mApy — Mip
kZ=0 (m — k)p(k,0) = " (10)
_ AA+ p2)
p(1,0) = p (0,0) (11)
2 2
p(20) = Ll 0.0, )
For k > 3
p(k,()) — ()‘ + MZ)[’? + (k - 1)“1] p(k _ 1,0)
12
A2k -]
) ki po p(k =2,0)
- T p(k — 3,0). (13)
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Fig. 5. Markov chain for LH job model.

The proofs of (9) to (13) are included in the Appendix C.
From the above results, we can easily find the mean number
of jobs in the system. Using the mean number of jobs in the
system and Little’s result [12], we can find the mean system
time as follows. '

m—1
Hip2
Trg = < k(m — k)p(k,0
B Mmppa = mAps = Mig) 2= ( )p(k,0)
A= mps — e

- 14
My pg — MAp — Ao (14

where p(k,0) for 0 < k < m — 1 can be obtained from (10)
to (13).

Here we will compare the results shown in (5) and (14).
For both cases, the job model considered are the LH job
model. As mentioned in Section III, the results obtained from
(5) should be a good approximation to that from (14) when
m >> 1. Fig. 6 gives the delay performance of an example
with (Py, Pa, p1,p2) = (1,20,1,1) using (14) and another
curve derived from (5) using u1 = pp = 1. Fig. 6 shows
that these two curves are very close to each other. Intuitively,
we know that the results derived from (5) and (14) will be
even closer for a larger m. This confirms our assumption in
Section IIIL

B. The HL Job Model

We study the case when the high-concurrency stage precedes
the low-concurrency stage in this subsection. As defined
above, we define p(k, 7) to be the probability that there are &
jobs in stage 1 and j jobs in stage 2 in the system. Since the
priority is given to stage 2, hence whenever there are j jobs
working in stage 2 (i.e., j = m = P), then all k jobs in stage 1
are forced to wait in the queue. Therefore, there can be at most
m jobs in stage 2. Unfortunately, we are not able to solve the
general case for an arbitrary value of m. However, the result
for m = 2 can be derived and are given at the bottom of this
page. The Markov chain for m = 2 is shown in Fig. 7.

To prove (15) is easy but tedious. We omit the details which
can be found in [7]. : t

30
—a— Exact
—— Approximation
"‘E’ 20
'3
E
2
o
=
10 1
o +—r——-"tp—"—"r"T1T"—"""r1—r———p—r—
0.0 0.2 0.4 0.6 0.8 1.0
Load

Fig. 6. Comparing (5) and (14) for m = 20.

V. SCALE-UP RULE

The results derived in previous sections are for cases when
the number of processors in the system equals the maximum
number of processors required by the job. This assumption
simplified the Markov chain dramatically, hence making the
analysis feasible. However, this analysis is infeasible when
the number of available processors is greater than the max-
imum number of processors required by the job (ie., P >
Max(P;, P»)). In order to solve this problem, we propose the
Scale-up Rule which gives a very good approximation result
without adding any analytical complexity. An application
of the Scale-up rule to the 2-stage job model when P >
Max(Py, P,) is provided in this section. For the rest of the
paper, all simulation results are represented by 90% confidence
interval using ¢-distribution and the approach used here is the
“replicate/deletion” approach as indicated in [20, p. 551].

There has been considerable effort paid to the analysis
of the mean waiting time of an M/G/n queue. Some of
them provided bounds [2], [8] while some of them provided
approximations [1], [4], [5],[6], [15],[16]. In this paper, we
focus our attention of the results obtained in [13] and [14]

(363 + p1p2 + 2u3) A2 — po (42 — pape — 4u3) X — 4p3 (uF + 3pape + 2u3)

Ty =

(A + 2u2) (1 + 2p2) (A1 + 2A 2 — 241 p2)

(15)
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Fig. 7. Markov chain for HL job model.

which provided an approximation for such a system. In [1]
and [3] this model was extended to achieve a better result.
We define Wyi/g/» as the mean waiting time for an M/G/n
system. In [13] and [14] the following approximation for
Wwm/c/n Was suggested as shown in (16). This expression
proved to be a very good approximation as some simulation
results in [7] demonstrated.

~ Wmyc/1

= — 16
Fanes (16)

Wum/c/n = «Wn/M/n-

A queueing model with a varying number of required
processors has been studied in some previous works [17]-[19].
However, in these works, none of them tried to make a full
use of all processors. That is, only our model will not allow
cases where there are available processors idle in the system
while there are also jobs waiting in the queue.

In this subsection, we will extend (16) to the 2-stage job
model when P > Max(P;, P;). Although the number of
processors required by a job varies during its execution on
different stages, we were surprised, and pleased, to discover
that the rule which applies to the classical queueing system as
stated in (16) also applies in our model. In other words, if we
have to find the mean waiting time for a paralle] system with
P > Max(Py, P;), we will first find the mean waiting time
for the system with P’ processors where P’ = Max(P;, Py)
using the method derived in the previous sections. From the
result obtained for P’ = Max(P;, P»), we apply the following
Scale-up rule to obtain the result for system with P processors
(P> P').

Scale-up Rule: Given a system with P processors and the
job model (Py, Py, p1, p12); we want to find the mean waiting
time if P > Max(P, P»). We first obtain the mean waiting
time of the system assuming the number of processors in
the system, denoted as P’, equals Max(P;, P2). This result
can be obtained from the previous section. We denote the
mean waiting time for such a system with P’ processors as
Wwuy/im /l(p), where p is the system load and JM stands for
“Job Model.” For the original system with P processors and
denoting P/P’ as n (n > 1), we define Wy 3m/n(p) to be
the mean waiting time of the system with P = n.P’ processors.

Similarly, we define Wyi/m/n(p) to be the mean waiting time
of an ordinary M/M/n queueing system with mean service
time equals 1/p1 + 1/u2. The Scale-up Rule says that

~ W/am/1(p)

= -W .
Waymyi(p) M/24/(0)

Wnyamy, () 7

Since the parameters in the right hand side of (17) are all
known values, hence Wy ym/n(p) in the left hand side can
be calculated. The approximation result is a combination of
the use of the exact result froni Section IV and the use of
the Scale-up rule. From the obtained mean waiting time, we
can easily obtain the mean system time by adding into the
mean service time which equals 1/ +1/. Some examples
are given to show how good these approximation results are.
Figs. 8 to 11 give a comparison between simulation results
and approximation results using the Scale-up rule where the
priority is given to stage 2. The approximation results are
obtained by first exactly finding the mean system time for
P = 2 using the technique given in Section IV, then the
scale-up rule is used to obtain the results for P > 2. Two
cases are given for two different job models. One is described
as (P, Py, p1, p2) = (1,2,1,1) and the other is described as
(P1, Py, pa,p2) = (2,1,1,1). Figs. 8 and 9 show the results
when P = 4 and Figs. 10 and 11 show the result when
P = 10. From these figures we show that the Scale-up Rule
is indeed a very good approximation method.

VI. AN APPROXIMATION FOR THE GENERAL CASES

As we mentioned earlier, to exactly evaluate the perfor-
mance of a general case with N (N > 2) stages is extremely
difficult. In this section, using the exact solution of the
2-stage model and the scale-up rule, we give an approximation
method for any general 'processor-time‘ task graph and any
number of prdcessors in the system. In this model, we give
higher priority to jobs closer to completion. That is, jobs in the
last stage (the Nth stage) have the highest priority while jobs
in the first stage have the lowest priority. Again, preemption is
assumed. The simulation of this approXimatiOn method shows
reasonably good results. .
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Fig. 8. An approximation result for job model (1,2,1,1) and P = 4.
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Fig. 9. An approximation result for job model (2,1,1,1) and P = 4.

Given a processor-time task graph, we divide the processor-
time task graph into two pieces such that the mean service
time for each piece is the same. In each piece, we average the
work load over its service time to find the average number of
processors needed. By so doing, we achieve a 2-stage model
as analyzed in Section IV. We use this modified 2-stage model
as the basis for the approximation model. '

If the first stage requires fewer processors than the second
stage in the modified model, we use the result obtained in
Section IV-A. An example is shown in Fig. 12. In Fig. 12(a),
the processor vector for this 4-stage job is {3, 1,3,9] and the
corresponding time vector is [1/2,1/2,1/2,1/2]. By dividing
the time vector into two equal pieces, the first two stages of
Fig. 12(a) will be merged into the first stage of the modified
model as shown in Fig. 12(b). Similarly, the last two stages of

-
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Fig. 10. An approximation result for job model (1,2,1,1) and P = 10.
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Fig. 11.  An approximation result for job model (2,1,1,1) and P = 10.

Fig. 12(a) will be merged into the second stage of the modified
model as shown in Fig. 12(b). In order to make the workload in
Fig. 12(b) to be the same as in Fig. 12(a), the processor vector
of Fig. 12(b) is [2,6] and the time vector is [1,1]. Figs. 13
and 14 show the approximation results for this example given
12 and 45 processors in the system, respectively. From these
figures, we see that the approximation results are very close
to the simulation results.

If the first stage reqqirés more processors than'the second
stage in the modified model, there is one more step to be
done in the approximation method. An example is given in
Fig. 15. In Fig. 15(a), the processor vector is [3,9,3, 1] and the
time vector is {1/2,1/2,1/2,1/2]. Applying the same rule as
we did in Fig. 12, we convert Fig. 15(a) into Fig. 15(b) such
that the processor vector and the time vector of Fig. 15(b)
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3,9,1/2,1/2,1/2,1/2]. (b) An approximation model for (a).
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Fig. 13. An approximation result for Fig. 12(a) and P = 12.

are [6,2] and [1,1], respectively. Since we can analyze the
system only when the number of processors required in the
first stage is exactly twice of that in the second stage, we have
to modify the modified 2-stage model by using a modified
3-stage model. The first stage of the modified 3-stage model
[as shown in Fig. 15(c)] is the same as the first stage of the
modified 2-stage model [as shown in Fig. 15(b)}). The second
stage of the modified 3-stage model is modified such that it
requires exactly half of the processors required in the first
stage (of the modified 3-stage model) and the total workload
required in the stage is the same as that of the second stage
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Fig. 14. An approximation result for Fig. 12(a) and P = 45.

from the 2-stage model. The third stage in the 3-stage model is
used to adjust the no-queueing service time such that it is the
same for the modified 2-stage model and the modified 3-stage
model.

The processor vector and the time vector for Fig. 15(c) are
[6,3,0] and [1,2/3,1/3], respectively. Although the model in
Fig. 15(c) is different from the model described in Section IV-
B, it can be solved by using the result from Section IV-B.
Notice that the third stage has the highest priority and requires
no processors from the system at all; the existence of stage
three has no impact on stages one and two. Hence, we
can solve this problem by first neglecting the third stage in
Fig. 15(c) and apply the results obtained from Section IV-B;
from this result, we add the mean service time of stage three
to it to get the overall mean response time. Figs. 16 and 17
show the approximation results for this example given there
are 12 and 45 processors in the system, respectively.

VII. CONCLUSIONS

In this paper we are able to find the average system delay
of various job models and disciplines when Max(Py, P») >
P >> 1 and Max(P;, P2) >> Min(P;, P2) in a large parallel
processing system. Further, we achieve the following conclu-
sion that the priority should be given to jobs working on the
low-concurrency stage to achieve a better delay performance.
This priority assignment scheme remains true for 3-stage job
models with a high-concurrency stage preceded and followed
by low-concurrency stages. By dropping the Max(Py, Po) >>
Min(Py, P;) condition, we also obtain the mean system delays
for cases when the priority is given to jobs working on
stage 2. A Scale-up Rule is further proposed which gives very
-good approximation results for systems when the number of
processors in the system is greater than Max(P;, P»). Finally,
an approximation model for the general cases with N (N > 2)
stages is included which shows reasonably good results.




HUANG AND KLEINROCK: DYNAMIC SHARING OF PROCESSORS IN TWO-STAGE PARALLEL PROCESSING SYSTEMS , 3157
Processor 15 T T T T T 7 T v
A
e APPROXIMATION
9l— — 12 .
L w
® F
=
w oF i
3 g
- g
1 o Time W
4 6 [~ -
(@) 3
2
Processor
ﬂ 3 .
9L
6 0 ! 1 1 1 ] | 1 [ 1
0 01 02 03 04 05 06 07 08 09 1
3 LOAD
, I > Tine Fig. 16. An approximation result for Fig. 15(a) and P = 12.
1 2"
b '
© 5 T 1 T T 1 T T 1
Processor
A e APPROXIMATION
4} -
9 -
3
6 =
w 3 ]
2
C) o
a
. - @
1 2 - me o< 2 _
z
© z
=
Fig. 15. (a) An example with [Py, Py, Py, Py, 1, pa2, p3,pa] = [3,9,
3,1,1/2,1/2,1/2,1/2]. (b) The first step toward approximation model for
(a). (c) The second step toward approximation model for Fig. 15(a). 1 -1
APPENDIX A
0 [ SR S NN (NN N SR S N

A. Proof of Theorem 1

Proof: For the HL job model, we can regard stage 1 as
an M/M/1 queue. Hence, we have the Laplace transform of
the system time for stage 1, denoted as Y;*(s), given in [9,
p. 195]

p1(l = p1)

i) =3 +p1(l=p1)

(A1)

For stage 2, the system time can be found by using the.delay
cycle analysis given in [10, p. 110]. When stage 1 is idle, jobs
in stage 2 have an exponential service time distribution with
parameter uo. However, when stage 1 becomes busy, jobs in
stage 2 will all be paused until stage 1 becomes idle again and
resume the work. Clearly, the system time for stage 2 can be
modeled as a delay cycle. The distribution of the initial delay
cycle can be found in the following.

It is shown in [9] in page 176 that in an M/G/1 system,
the probability that a departure finds k£ jobs in the system

0 01 02 03 04 05 08 07 08 09 1
LOAD
Fig. 17. An approximation result for Fig. 15(a) and P = 45.

equals the probability that there are k£ jobs in the system in
equilibrium. Hence,

Pr[a departure from stage 1 finds k jobs still in stage 1]
=(1-p1)rl. (A2)

A departure from stage 1 to begin receiving service in
stage 2 finds k jobs still in stage 1 has an initial delay cycle
whose Laplace transformed distribution, denoted as G(()k)(s),
can be represented as

G(()k)(s)=< 1 )k_ b2

. A3
s+ m 8+ p2 (a3

From the delay cycle analysis formula [10], we have the
Laplace transform of the system time for stage 2, denoted as
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Fig. 18. Markov chain for LH job model.

Y5 (s), given as

Yi(s)= Y- (1= po)ok -G (s + X = AG"(s))
k=0
oo 11 k
= (1 — k.
k;_o ( pl)pl |:8+)\~/\G*(3)+[L1
. U2
S+ A — AG*(s) + peo

= w1~ pr) - =
s+ A —AG*(s) + p2
s+ A= AG*(s) + m
" T s = AG*(s) + 1
_ pape(l — p1)
G*(s)[s + A = AG*(s) + pa][s — AG*(8) + pa]

where p; equals A/uy and G*(s) is the Laplace transform of
the busy period distribution of stage 1.

From (A1), (A2), and (A3), the Laplace Transform, Yy, (s),
of the system time of the HL job model equals Y;*(s) - Y5'(s)
as shown in (1). Q.E.D.

B. Proof of (4)

Proof: By defining state (ny,n2) as ny jobs in stage 1 and
n9 jobs in stage 2, we have the Markov chain given in Fig. 18
and the following equilibrium balance equations:

(A + kp1)p(k, 0) = Ap(k — 1,0) + pap(k,1)  k2>1
(B1)
(A + p2)p(k = 1,1) = kpip(k,0) + Ap(k —2,1)  k2>2
(B2)
Ap(0,0) = p2p(0,1) (B3)
(A + p2)p(0,1) = p1p(1,0). (B4)

We define p(k) to be the probability that there are totally k
jobs in the system and define the following notation:

P(z) =Y p(k)z*,  Po(2) =Y p(k,0)z",
k=0 k=0

oo}

Pi(z) = zp(k’ 1)z*.

k=0

Since p(k) = p(k,0)+p(k — 1,1), it can easily be shown that
P(z) = Py(2) + 2P1(z). From (B1) and (B3) we have

/\P()(Z) + 11z —(i Po(z) = /\ZP()(Z) + /1,2P1(z).

7 (BS)
From (B2) and (B4) we have
()\ + ,ug)Pl(z) = % Po(z) + )\zPl(z) (B6)

From (B5) and (B6) we have the following differential equa-
tion for Py(z).

d
(A2 — pa)py 7 Po(2) + MA + p2 — A2)Po(2) = 0.

Solving this linear differential equation we obtain the follow-
ing explicit expression of Py(z):

Po(z) = - exp((A/p1)(z = In[Az — pzl))

where ¢ is a constant yet to be determined. From (B5) and
(B6) we have

(B7)

A
Pl(z) = Yz — Nz

Combining (B7), (B8), and P(1) = 1 we find c to be

Po(z). (BS)

¢ = 222 exp(=\/pn)(1 = i = A)).

From the above results we have the z-transform of the number
of jobs in the system as shown in (4). Q.E.D.

C. Proof of (9) to (13)

Proof: From the Markov chain given in Fig. 6, we have

(X + kp1)p(k,0) = Ap(k — 1,0) + pop(k, 1)

1<k<m (C1)
(X + mu1)p(k,0) = Ap(k —1,0) + pop(k, 1)

k>m | (C2)

(A + p2)p(k - 1,1) = Ap(k — 2,1) + kpap(k,0)
2<k<m (C3)

(A+ p2)p(k —1,1) = Ap(k — 2,1) + mpip(k, 0)
k>m (C4)
Ap(0,0) = p2p(0,1) (C5)
(A + p2)p(0,1) = p1p(1,0). (C6)
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We define p(k) = Pr[k jobs in the system] = p(k,0) +
p(k —1,1). We further define

P(Z) = Zp(k)zk, Py(z) = Zp(k) O)zk»
k=0

k=0
Pi(2) — 3 plk, )2
k=0 .

Hence, we have P(z) = Py(z)+ 2P1(z). From (C1) and (C2)
we have

m—1
(A +mp1 = A2)Po(2) = paPi(2) + 1 Y
k=0
- (m — k)p(k,0)zF.  (C7)
Similarly, from (C3) and (C4) we have
m—1
[N + 12)z = A2%|Pi(2) = mps Po(2) — i
k=0
- (m —k)p(k,0)z". (C8)
From (C7) and (C8) we have
A

From (C7), (C8), and (C9) we have P(z) as shown in (9).
The remaining job is to find all p(k,0) for 0 < k < m — 1.
Using (9) and P(1) = Py(1)+ P1(1) = 1, we can obtain (10).
Equations (11), (12), and (13) can easily be obtained from
arranging (C1), (C3), (C5), and (C6). From (10) through (13)
we are able to find all p(k,0) for0<k<m-1. QED.
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' Collecting Unused Processing Capacity:
An Analysis of Transient Distributed Systems

Leonard Kleinrock, Fellow, IEEE, and Willard Korfhage, Member, IEEE

Abstract—Distributed systems frequently have large numbers
of idle computers and workstations. If we could make use of
these, then considerable computing power could be harnessed at
low cost. We analyze such systems using Brownian motion with
drift to model the execution of a program distributed over the idle
computers in a network of idle and busy processors, determining
how the use of these “transient” processors affects a program’s
execution time. We find the probability density of a programs
finishing time on both single and multiple transient processors,
explore these results for qualitative insight, and suggest some
approximationis for the finishing time probability density that
may be useful.

Index Terms— Brownian motion, distributed processing, idle
processors, performance analysis, transient processors.

I. INTRODUCTION

‘ ISTRIBUTED systems frequently have large numbers of

idle computers and workstations. If we could use these,
then considerable computing power could be harnessed at low
cost. In this paper, we model program execution on a network
of workstations, some idle and some not. Because wé use
only the idle time on the processors, they are not always
available for use. Hence,\we call these machines “transient”
processors. Using a direct analysis and a cumulative alternating
renewal process analysis both provide simple expressions
for the probability density of the program finishing time
on a single transient processor. We extend the cumulative
alternating renewal process into a Brownian motion with drift
model of the finishing time density on multiple processors. We
then examine the properties of the finishing time probability
density to achieve some qualitative insight into the results.
Finally, we suggest several approximations for the finishing
time probability density, and discuss under what conditions
they can be used.

A. Background

Networks of computers are common in business and
research environments  throughout the world. Local area
networks, which were originally introduced to ease data and
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MDA 903-82-C0064, Advanced Teleprocessing Systems, and Contract MDA
903-87-C0663, Parallel Systems Laboratory. W, Korfhage was also supported
by an HP/AEA fellowship. This work was done while W. Korfhage was at
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L. Kleinrock is with the Department of Computer Science, University of
Calfiornia, Los Angeles

W. Korfhage is with the Department of Computer Science, Polytcchmc
University, Brooklyn, NY 11201.

IEEE Log Number 9208484,

device sharing, have grown in speed, sophistication, and size to
the point that effective distributed processing can be performed
on them. These networks vary in size from a handful of
personal computers on a low-speed network, to networks
consisting of thousands of workstations and a variety of larger
machines on a high-speed, fiber-optic network. As a typical
example, consider a network of workstations on a high-speed
network in a research laboratory. Not only are there many
machines, well corinected by the network, but the users are
likely to demand more and more computing power as the
applications grow.

Networks of workstations have grown in spite of theoretlcal
considerations that would discourage them. It is well known in
queueing theory [2] that a single server of large capacity shared
by many users provides better response time than many smaller
servers with the same total capacity. Thus we might expect
that a mainframe will provide faster service to its users than a
network of workstations. Of course, one may argue that for the
same amount of money one can buy much more workstation
capacity than mainframe capacity, but even then we would like
to make the best use possible of our computing resources. This
implies that a network of workstations would have improved
performance (overall) if the workstations were considered
part of one processor pool, available for the execution of all
programs. Some systems, such as Amoeba [3] provide a pool
of processors strictly as compute servers. We, however, would
like to retain the usual use of workstations on the network in
addition to considering them part of the processor pool.

The solution to this is idle time. On these networks, we
often have the situation that many of the personal computers
and workstations are sitting idle, waiting for their users, and
thus being wasted ([4], [5]). If we could recover this wasted
time for useful processing, then we would have considerable

" computing power available to us at low cost. We refer to these

processors, which are sometimes busy and sometimes not, as
transient processors.

Whether this is technically feasible or not depends on a
variety of factors, such as the properties of the communications
medium, the properties of the computers, and the statistical
characteristics of the user population.! In all systems of this
type, one concern is that the “owner” of a machine should not
see any degradation in performance because of the background
programs. Any background computation should be aborted

1There are also other important but nontechnological factors, such as
people’s resistance to the use of “their” machine, that would determine if
and how a distributed system would be implemented. This paper does not
examine such matters.

1045-9219/93$03.00 © 1993 IEEE
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when user activity is detected, and not restarted until the
system is sure that the machine is idle.

There has been much research on systems that make use
of idle workstations through load balancing and process mi-
gration; we mention here a few such systems. Most of these
provide remote program execution facilities (e.g., run a com-
piler at another machine rather than on the local workstation),
rather than specifically supporting distributed computations.
We make note of those systems that have been designed
specifically for distributed computations.

Alonso and Cova [6] discuss a load balancing system for
workstations in which a workstation tries to execute a job
remotely if the local processor load is greater than some “High
Mark,” and accepts jobs from other workstations if the local
processor load is less than some “Low Mark.” This allows for
a continuum of migration policies.

At U.C.L.A., the Benevolent Bandit Laboratory (BBL) [7]
runs distributed computations under MS-DOS on a network
of IBM PC-AT’s. A special shell runs on each machine,
and when a machine is at the operating system prompt
level (as opposed to running a program), it is available for
use. If someone starts to use a machine currently part of a
background, distributed computation, the system can select and
start a replacement machine from the pool of idle processors.
Because the system was also intended for the investigation
of distributed algorithms, special features, such-as the ability
to mimic any connection topology, and some distributed
debugging facilities, have been built in.

Lyle and Lu [8] describe a simple remote program execution
facility that operates at the shell level, like BBL, rather than
the kernel level. This has the advantage of being simple to
implement, yet still uses idle workstations.

Condor ([9], [10], [4]) is a very successful remote program
execution facility running on workstations at the University of
Wisconsin. The developers of the system have made a number
of useful measurements of workstation behavior in [10].

The Butler system [11], running on Andrew workstations
at Carnegie-Mellon also provides remote program execution
facilities. The system uses this to run gypsy servers, which are

network servers that run on idle workstations instead of on a

fixed machirne.

Stumm [12] discusses a remote program execution and task
migration facility for the V kernel. His paper discusses various
issues, such as the migration policy, and offers thoughts on
using the system for distributed computations.

The Worm program [13] was developed at Xerox PARC
as an experiment in distributed processing. Worms prowled
the mnetwork, collecting idle workstations and using them
to perform some action, typically dlsplaymg a message or
running a diagnostic program.

There have also been ad-hoc attempts to use the idle time
on processors. Dr. Tim Shimeall [14], during his dissertation
research, wrote a program “polite” that ran a software analysis
program on workstations when no one was logged in and
suspended the program when the workstation was being used.
He reports that he finished nearly 10 CPU years of work
in about 6 months on 20 workstations using this program.
But again, this was very much a simple remote job exe-

cution facility, put together out of need, and it was never
analyzed.

B. Outline

Section II discusses our model of the network. Section I
gives a simple analysis of the average time for a program to
finish. Sections IV and V then develop three models of the
network and analyze them to find the distribution of time to
finish a fixed amount of work.

The first model, in Section IV-B, is a single processor model
with general available and nonavailable times. We examine
the number of nonavailable periods interrupting a program,
and from this we find the Laplace transform of the distribution
of the time to finish a program (response time), and then the
mean and variance of the response time.

The second model, in Section IV-C, is also a single pro-
cessor model, but it is analyzed as a cumulative, alternating
renewal process. We find that the asymptotic distribution of the
accumulated work (over a long period of time) is Gaussian,
with simple expressions for the mean and variance.

The third model, in Section V-A, handles multiple pro-
cessors and views the amount of work done over time as
Brownian motion with drift. We scale the asymptotic mean
and variance of the accumulated work from the second, single
processor model to the case of M processors, and use this
as the mean and variance of the Brownian motion with drift.
From this we get the probability density of the time to finish
a fixed amount of work on M processors. The mean and the
variance agree very closely, for M = 1, with the first model.

Finally, Section VI contains the conclusions. These three
models offer an approach to predicting performance of dis-
tributed programs on transient processors. By relaxing some of
our assumptions, more sophisticated models could be derived
from those described here.

II. THE MODEL OF THE NETWORK AND THE WORKLOAD

A. The Network

Assume that we have a network of M identical processors,
each 'of which has a capacity to complete one minute of work
per minute. A processor alternates between a nonavailable
state (signified by n or na), when the owner is using it (e.g.,
typing at the keyboard), and an available state (signified by
a or av), when it is sitting idle. The lengths of nonavailable
periods are independent and identically distributed (i.i.d.) ran-
dom variables from distribution N(t), with mean ¢,,, variance
02, and corresponding density n(t); we allow any general
distribution for N(t), unless otherwise specified. Likewise,
available periods are i.i.d. random variables from a general
distribution A(t) with mean t,, variance o2, and density
a(t). The available and nonavailable periods are mutually
independent.

B. The Distributed Program Workload

We model a program as consisting of multiple stages of
work, each of which must be completed before the start of
the next, and each of which represents a deterministic amount
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Fig. 1. Execution time profile of an algorithm.

of work (Fig. 1). The time to finish a program is the sum
of the times to complete the individual stages. We assume
that the time to finish a stage depends only on the amount
of work in that stage, and is independent of the other stages.
This means that the probability distribution of the total time
to finish a program is the convolution of the distributions
of the individual stage finishing times. Assuming that the
network characteristics do not change during the execution
of the program, then from the analysis of the time to finish
a single stage requiring W minutes of work we can find the
finishing time probability density function of all other stages,
and from there, the finishing time probability density function
of the program as a whole. '

We make the simplifying assumption that the work in
any stage is infinitely divisible—it can always be divided
evenly among all available processors. Note, however, that this
assumption does not always obscure program behavior. Some
programs, such as the simulators used for the models of this
paper, are, in fact, composed of very many independent tasks,
and work is always available for any idle processor. In such
cases, this assumption captures the program behavior and is

. not a simplification at all. In addition, in a system with multiple

users on many machines, the aggregation of independent jobs,
each with a number of tasks, from many users will yield an
overall workload that tends to look like many independent
tasks (or, at least, enough tasks to keep idle machines busy),
and this would fit well with our assumption. We will explore
this more in future work.

Another simplifying assumption we make is to ignore
overhead that occurs in a real system (e.g., communication
delays, processing delays), and thus our model provides an
optimistic bound on system performance. Some techniques for
removing this assumption are mentioned in [1].

C. What We Seek

The purpose of this paper is to find f(t), the probability
density function (pdf) of a program’s finishing time (i.e.,
response time). Also of interest are its mean, f, and its
variance, o%.

In the process of finding these, we will need another
function, namely, the pdf of the amount of work accumulated
(i.e., completed) by a processor or. network of processors
over time. We denote this by y(u | t), the probability density
that after ¢ minutes of time have elapsed, the processor (or
processors) under consideration has accumulated » minutes
of work. This function has mean E[y(u |t)] and variance
Varly(u | )].

D. Notation

We use the abbreviations “PDF” to stand for “probability
distribution function.” Typically we use capital letters for a
PDF and the corresponding lower case letters for a pdf. If
F(z) is a PDF, then its pdf is f(z) = (8/8z)F(x).

E. Example Parameters

Mutka and Livny, [10], made actual measurements of a
network of transient processors, and they developed models
for the available and nonavailable period densities to fit these
measurements. From their results, we derive two examples
that we use throughout this paper.

The model they used for the available time PDF was a
3-stage hyperexponential distribution:

A(t) = P [length of an available period < ]
=0.33(1 — e~ /%)) 4+ 0.4(1 — e~ t/2))
+0.27(1 — e~ ®/300)) ¢ >0 1)
which has mean ¢, = 91 min and variance 02 = 40225 min?.
For the nonavailable time distribution, N(¢) = P[length

of a nonavailable period < ¢], they used a shifted 2-stage
hyperexponential distribution:

N(t) = 0.7(1 —e~®/M) 4 0.3(1 —e~#/39) if ¢ >7
10 fo<t<7
@
which has mean t, = 31.305 min and variance o2 =

n

2131.83 min?. The 7 min shift in the distribution arises
because a processor was not declared idle until 7 idle minutes
had elapsed. ,

We use Mutka and Livny’s distributions wherever possible
in our examples, but frequently we assume exponentially
distributed available and nonavailable periods; at such times,
we take the means of these exponential distributions to be
the numbers given above. The use of exponential distributions
instead of hyperexponential distributions will not affect any
means that we derive, but any variances that we find will be
lower than if we had used Mutka and Livny’s distributions.

Regardless of which distributions we use, we take W =
1000 min and M = 1 for single processor examples, and,
W = 10000 min (almost 7 days) and M = 100 for most
multiple processor examples. The reason for the large values
of W is explained below.

F. Related Work

One approach to analyzing a single processor system is to
use queueing with vacation as a model. In such a system, the
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queueing server is subject to randomly occurring stoppages
lasting for random amounts of time. There are many varieties
“of such systems depending upon what restrictions we put on
the vacations (see [15] for a survey). For our model, we require
vacations to occur preemptively and at any time (as opposed
to vacations that occur only when the processor is busy). The
earliest analysis of such systems is in [16], and later in [17],
but Gaver ([18]) derives the Laplace transform for the finishing
time by assuming exponentially distributed available periods
and generally distributed nonavailable periods. Federgruen
and Green ([19]) extend the analysis to generally distributed
available periods, but they find only the first two ‘moments of
the finishing time, and not its distribﬁtion

For both smgle and multiple processor systems, performabil-
ity analysis offers an alternative approach to ours. Performabil-
ity analysis ([20], [21], [22]) combines dependability analysis
with performance measures. A system is modeled as a Markov
or semi-Markov process in which each state of the process
represents a possible configuration of the system with respect
to failed and working components. In a multiprocessor, for
example, the state could be the number of working processors.
This state represents the reliability aspect of performability
analysis. Associated with each state is a reward representing
either the performance measure of interest, or a quantity that
may be used to calculate the performance measure. Applied to
the models of this paper, the state of the system represents f the
number of available processors, and the reward for each state
is the amount of available computm_g power (in operations
per time unit) in that state. Our goal would be to find
the distribution of time it takes for the accumulated reward
(accumulated work) to reach a threshold representing the
amount of work a program requires.

A number of researchers have examined the problem of
finding the distribution of accumulated reward (also known
as the performability distribution). Nonrepairable systems, in
which a nonavailable processor cannot become available (“be
repaired”), are easiest to analyze, but are not applicable to our
problem. For repairable systems, somé researchers have found
methods to get the moments of the performability distribution
([23], [24], [25]), and other researchers have expressed the
performability distribution as a double Laplace transform
(24, 126], [23], [27], [28], [29]). In the latter, typically
the transform can be inverted analytically on one variable,
then inverted numerically on the other variable, although
[24] perform the inversion entirely numerically. In [30], de
Souza e Silva and Gail apply randomization techmques to
numerically find the distribution of performablhty over a finite
time interval.

However, we do not want this distribution of accumulated
reward itself, but we would like to find the distribution of time
for the accumulated reward to reach a threshold. Because our
reward represents accumulated work, this latter distribution
is equivalent to the distribution of time to complete a job.
In one of the early papers on performability, Beaudry [20]
defines this quantity, but never derives it for systems of
interest to us. Kulkarni, Nicola, Smith, and Trivedi {27] find
a double transform of the job completion time distribution in
terms of a system of equations, and provide an algorithm for
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numerical inversion of the transform. The difference between
this previous work and the work contained in this paper is that
our model takes a different view of the problem and involves
simple, approximate analytical expressions, with no numerical
techniques being necessary.

Finally, much of the work on performability concerns itself
with transient analysis, because in a well-designed, fault-
tolerant system, faults will be quite infrequent, and steady
state analysis can be misleading. Our situation is the opposite,
with “faults” (processor nonavailability) occurring frequently,
and we expect many “faults” to occur before a program
finishes execution. Iyer et al. [26] note that asymptotically,
after a long enough time that every state of the system has
been entered many times, the performability distribution is
normally distributed, and the mean and standard deviation
of this distribution can be found by solving sets of linear
equations. In this paper, we come to the same conclusion about
the normality of the asymptotic distribution by starting from
the analysis of a single processor, as discussed in Sections IV-
C and V-A, and in doing so we find simple expressions for
the mean and variance of this distribution [(18) and (19)].

" One appealing aspect of performability models is that by
setting the rewards appropriately for each system state, the
model could capture some of the inefficiencies that occur as a
program executes on varying numbers of processors, examples
of which are the additional communication overhead involved,
or the program’s inability to use all available processors. These
rewards, however, would be specific to that particular program.
Ammar and Islam [24] have done this using Generalized
Stochastic Petri Nets to generate the reliability model for a
specific architecture, and then trace-driven simulations of a
specific algorithm to determine the reward for every state
of the reliability model. The reward is the inverse of the
total execution time of the computation, given the system
is in a particular state. Because there may be many states
in the reliability model, and hence many simulation runs
required, their model is potentially quite time consuming.
We are investigating methods by which we can capture the
interaction of the algorithm with the architecture within our
Brownian motion model. ‘

III. TIME TO FINISH A PROGRAM: QUICK MEANS

With simple reasoning, we can find the mean cumulative
work over time, Ey(u | t)], and the mean finishing time for a
program, f. Over a long period of time, a processor is available
a fraction of the time p, = t,/(¢s + t»), and nonavailable the
remaining fraction of the time, p, = t/(to + ta). Over a
period of ¢ seconds, the amount of work a processor does is
equal to the fraction of time it is available (assuming that there
is a large amount of work to do, and that the processor never
goes idle), and thus we have the equilibrium approximation

ta
to + tn

Ely(u | ¢)] = 3)

Similarly, it takes (¢4 + t,)/t, seconds to accumulate one
second of work, so the average finishing time for a program

1
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. on a single processor is
7 — tq + tn

i

W, @
|

|

\

In an M processor network, we accumulate work M times
faster and thus finish in (1/M)th of the time. Therefore:

Ely(u | t)] = % t. ®)
=  tatiy
f= i w. (6)

We will use these as a check on the other analyses.

IV. THE DISTRIBUTION OF
FINISHING TIME FOR ONE PROCESSOR

A. Introduction

We would now like to find the pdf of the finishing time for
any particular algorithm or program. This is also known as
the first passage time, the first time at which the accumulated
work is greater than some particular amount (W minutes
in our case). In this section, we analyze the behavior of a
program on a single, transient processor using two methods.
The direct method, in Section IV-B, yields f(t) for general
distributions, but unfortunately, it does not extend to multiple
processors because the analysis depends upon the system being
either fully available or fully nonavailable. In a multipro-
cessor system, we usually have partial availability: some of
the machines are available and some are not. We do not
derive the pdf of accumulated work, y(u | t), using the direct
analysis. However, by analyzing the problem as a cumulative,
alternating, renewal process (Section IV-C), we do find the
asymptotic probability density of the accumulated work as
t — oo, and we use this in the Brownian motion analysis
of the next section.

B. Direct Analysis of a Single Processor

We make a direct analysis of the single-processor problem
by counting the number of nonavailable periods that interrupt
our program before it completes. If our program starts at the
beginning of an available period, as shown in the middle of
Fig. 2, it will finish at time W +T,, where T, is the additional
time the program spends in the system because of interrupting
nonavailable periods.

Because we must finish the program in an available period,
and because we assume work starts at the beginning of an
available period, then none of the nonavailable periods are
truncated, and it is relatively easy to analyze the total length
of the nonavailable periods during the time T, + W. By
examining the arrival process for nonavailable periods, we find
that the Laplace transform of the finishing time density is

F(s)=e" Y IN*()* p(k | W)
k=0
= e”"*P(N*(s)) ™
where P(2) = Y70 p(k | W)2* is the z-transform of p (k |
W), the probability that k zero-length nonavailable periods
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Work to do

Fig. 2. Time for one node to finish W units of work.

arrive in a W minute period starting at the beginning of an
available period, and N*(s) is the Laplace transform of the
length of a nonavailable period. Note that we can also get the
finishing time density directly using the same technique, but
this usually results in an open expression; details are available
in [1]. From the Laplace transform, we can derive the finishing
time’s mean:

®

and variance:

a? = 0P+ tﬁaﬁ S
where 7 and 62 are the mean and variance of p (k | W).

The central limit theorem assures us that when we sum
many independent random variables, the resulting distribution
tends toward a normal distribution. We may note an important
consequence of this: asymptotically, for large W compared to
t, and t,, the finishing time density is normal with mean and
variance given in (8) and (9).

1) Example: Exponential Distributions: If available and
nonavailable periods are exponentially distributed, then the
finishing time density is

ft)=
eWita  ift=W
1/t ) (E=W) /)= (e 3 W/ta)* _w/s,
Zz?;l((/t )(((tk_l))!/i et —(t-W)/t )(( [kfi) =W/t )
ift>W

(10)

This was derived using a direct analysis detailed in [1]. Fig.
3 illustrates this density using Mutka and Livny’s parameters
to select the means ¢, = 91 min and ¢, = 31.305 min of the
exponential distributions. The mean finishing time is

- to +tn
F=wieln (1)
a
and its variance is
202 W
2 _ n
U'f = ta . (12)

The finishing time density looks similar to a normal density,
but it is asymmetrical. For ¢ less than the mean first passage
time, it rises sharply to a peak before the mean, then drops
into a stretched-out tail for large ¢. This asymmetry is more
apparent for small W, and as W grows, the density becomes
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Fig. 3. Probability density of finishing time for direct analysis.

more similar to a normal density, as one would expect from
the central limit theorem.

Unfortunately, the analysis of this section will not extend to
multiple processors because it depends upon the system being
fully available or fully nonavailable. With multiple processors
the system is usually partially available. However, it is possible
to get an approximation to the finishing time density for the
case of multiple processors by studying a different process,
namely the accumulated work. Thus, in the next section we
use a cumulative, alternating renewal process to analyze the
accumulated work on a single processor, then in Section V-A
we apply this analysis to the multiple processor case.

C. Cumulative, Alternating Renewal Theoretic Analysis

Here we reexamine a single processor using a cumulative,
alternating renewal process. Cox, in his book on renewal
processes [31], discusses this type of process, and we make
use of his analysis.

We can form a renewal process from the alternating states
of a transient processor by letting a renewal period be a
nonavailable period followed by an available period. In Fig.
4 the heavy dots indicate the beginning of each renewal
period. The durations of the available periods are i.i.d. random
variables from a general distribution, as are the the durations of
the nonavailable periods, and the lengths of the available and
nonavailable periods are mutually independent. Using Cox’s
results, we find that the distribution of accumulated available
time has mean and variance: .

t
E t)) ~ ——t 13
ol ]~ 2 )
02t2 + g2

Cox derives these by ignoring the available time accumulated
in the current available period if one is in progress at time ¢.
However, as time goes to infinity, the asymptotic distribution
of this approximation has the same properties as the true
accumulated available time. Note that the approximation for
E[y(u | t)] leads to a mean which corresponds exactly to the
equilbrium approximation of (3) in Section IIL

* Not Available
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Fig. 4. Cumulative renewal process for a processor.

For exponentially distributed available and nonavailable
periods, the mean remains the same and the variance may
be rewritten as

232
2aln (15)

Vary(u | t)] = (TR

We could use this approach to get a (possibly very complex)
expression for the distribution of accumulated available time;
this was also done in [1] based on the techniques of the
previous section. Of more interest to us is the fact that the
asymptotic pdf of the accumulated available time (for large
t) is normal with mean and variance given by (13) and (14).
This distribution is based on a sum of random variables (the
available periods), and the Central-Limit Theorem [32] tells us
that as the number of random variables in the sum approaches
infinity, this pdf converges to a normal pdf. Thus the pdf of the
accumulated work, y(u | t), is well approximated by a normal
pdf if many renewal periods have occurred, or equivalently,
if ¢+ > t, + t,. This normal pdf will be the basis of the
Brownian motion model in the next section, which will lead
us to an approximation for the distribution of finishing time
with multiple processors. ‘

V. THE DISTRIBUTION OF FINISHING
TIME FOR M PROCESSORS

A. Brownian Motion Approximation

Brownian motion concerns the random movement of a
particle through space. A stochastic process, Q(t), that de-
scribes Brownian motion has two basic properties. The first
is that Q(t) has independent increments: Q(t1) — Q(to) and
Q(t3) — Q(t2) are independent for 0 < tg < {3 <ty <#3 <
0o. Movement of the particle in one interval is independent
of its movement in another interval. The second property is
that each increment in the process, Q(t;+1) — Q(¢;) for all
i > 0, is normally distributed with a mean and variance
proportional to ¢;41 — ;. If the normal distribution has mean
0 and variance equal to #;1 — ¢;, then the process describes
standard Brownian motion, which is also known as a Wiener
process. Brownian motion with a nonzero mean is known as
Brownian motion with drift.

In our model, we let the stochastic process Q(t) represent
the amount of work accumulated by a network of M transient
processors up to time ¢. In Section IV-C, we found that over a
long period of time (much longer than t, +¢,), the amount of
work done by one transient processor is asymptotically normal
with mean and variance given in (13) and (14), respectively.
If we have a network of M such processors, and all the
processors are assumed to be independent and identical, then,
asymptotically, the amount of work done by time ¢ is the
sum of M independent, (approximately) normally distributed
random variables, and this is itself (approximately) normally

L)
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Aistributed. The mean amount of work done by time ¢ is

ta
_ta +tn

and the variance of the amount of work done by time ¢ is

u= Mt = p, Mt (16)

242 242
2 aatn + Unta,
= =22 Mt 17
(ta +1a)? an
Thus, Brownian motion with drift is a ngtural model of our
system. From p and o2 above, we define b and o7 (b signifies
Brownian), the mean and variance of the amount of work
accumulated per unit time:

g

- t
b= M =p,M 1
e P (18)
242 242
2 Uatn +Unta
=ZanmTne 19
Ty (ta +tn)3 ( )

We use b and o2 later in this analysis. Note that b agrees with
the average accumulated work that we found in Section III

We must still assure ourselves that our stochastic process
indeed has independent increments. On a short term scale,
this is clearly not true. Two consecutive one-minute intervals
are likely to have the same, or at least similar, numbers
of available processors in both intervals, and hence similar
amounts of work accumulated in those intervals. However,
in two one-minute intervals separated by several hours, the
number of available processors is quite unrelated (unless the
network has some very unusual statistical properties), and the
work accumulated in one interval is quite independent of the
work accumulated in the other interval. Thus we conclude that
the Brownian motion model is reasonable only over a long
span of time, and we insure this by specifying that {, < W
and {, < W. Note, too, that we are using the asymptotic
results of Section IV-C, and these are valid only for a long
span of time, which also requires a large W relative to %,
and £,. :

The Brownian motion model does allow some behavior that
seemingly cannot occur in a real network. For example, the
process is allowed to move in the negative direction, implying
that we can lose work that we have already done. This is an
artifact of the model, and it is particularly apparent at small ¢,
but it is negligible for the conditions under which the Brownian
motion model is useful. Given b, af, and ¢, and using the fact
that cumulative work is normally distributed, we can compute
the probability of negative cumulative work as

7 ~(bt/+\/o2t)
of =0ty L / et i ()
\/abit V2T Joo
where ®(z) is the cumulative density function for a standard
normal distribution. For ¢ near 0, ®(-bt/+/0%t) =~ 0.5,

- meaning that for very small ¢, our model says that almost

50% of the time the program has accumulated a negative
amount of work. Clearly, Brownian motion is a poor model
of networks of transient processors for very small ¢. If we
manipulate the expression ——Bt/\/;ﬁ we find it is equal to
—/(Mt,/2(1 — p,))t, and the coefficient of ¢ under the
radical is greater than 1 for any reasonable values of M,
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tq, and t,. Thus as time passes and ¢ moves away from
0 and becomes large, —+/(Mt,/2(1 — p,))t becomes quite
negative and ®((—bt/+/o?)t) shrinks to near 0. In fact, for
t = 34/07/b, the 30 point, the probability that we have
negative work is approximately 0.0023 and drops rapidly
thereafter to negligible amounts as ¢ grows. This is just further
confirmation that our model is valid only for relatively large
W that requires more than a short time to complete.

Using b and af as the parameters for our Brownian motion,
and using results in Karlin and Taylor [33], we find the
probability density of the time, ¢, that it takes for M processors
to finish W minutes of work is

|14 (W—Et)2]
)= —— exp | ———5—" 21
10 = s oo |- e
This has mean ’
= W W (to +tn)
T=T =% o @)
and variance
W o2
2= 22 23
i 53 (23)

Note that for the case M = 1, the mean and variance agree
with the direct analysis of Section IV-B. Of course the mean
is consistent with that of Section III for all M.

B. Example: Exponential Distributions

If we assume that both available and nonavailable periods
are exponentially distributed, then the mean and variance of
the accumulated work per unit time are:

- t
b= ——M =p,M 24
e p | @
2(tatn)2 2p2(1 - pa)M
2 — a
Oy = (ta n tn)s = tn . (25)

Applying this to (22) and (23) yields the mean of the finishing
time

+ W W(ta+ta)
f= P OM o, (26)
and variance
W o2 oW t2
2 b n
== = =" 2
TR Mt @7

Fig. 5 shows the finishing time density for both the direct
and the Brownian motion analyses with £, = 3600,%, =
300,M = 1, and W = 105. We note the good concordance
between the two analyses.

When we have M = 100 processors, Fig. 6 shows the pdf of
finishing time for various t,, with ¢, = 91 min and W = 10*
min. Using ¢, = 91 min and ¢, = 31.305 min (the standard
multiprocessor example), we have b = 74.4¢ and 07 = 887.2t,
which leads to f = 0.0134W and % = 0.00215W. Our
example job of 10 min would take about a week to run on
a single, dedicated processor. When run on a network of 100
transient processors, it would take 134.06 min, or about 2.25 h.
This particular finishing time pdf is in Fig. 7, which shows the
density both enlarged and plotted on a full time axis (starting
at .0). -
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Fig. 5. Finishing time densities for direct and Brownian motion analyses.
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Fig. 6. Finishing time densities for Brownian motion model for various t,.
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Fig. 7. Finishing time density for Brownian motion analysis.

C. Example: Mutka and Livny’s Distributions

Let us use the distributions measured by Mutka and Livny.
We have £, = 91 min, 03 = 40225 minz, t, = 31.305 min,
and o2 = 2131.83 min®. Plugging these into (18) and (19),
we find

74.4¢
= 6239¢.

(28)
(29)

Q'N (S
I

This leads to a finishing time mean and variance of

7 =0.0134W
0% = 0.0151W.

(30)
GD

We note that the finishing time variance using Mutka and
Livny’s distributions is almost an order of magnitude more
than for exponential distributions.

D. The Ratio o¢/f

It is instructive to examine the coefficient _of variation of
the finishing time, namely the ratio of o4 to f:

o _ Vi
Foovaw .
We note immediately that this ratio goes to zero as W
increases. Consequently, for sufficiently large W, it may be
accurate enough to consider the finishing time distribution as
an impulse (i.e., the Dirac delta function) at the mean finishing
time (in the spirit of the law of large numbers).
Assume that the available and nonavailable periods have
exponential distributions. Then the ratio becomes

(32

O'f n/t
T W T+ tn/te

Because we assumed ¢,, < W, this ratio tends to be less than
1. If we fix t,/W and let ¢, /¢, go to infinity (which implies
to ~— 0), the ratio goes to 0. We explain this by noting that
for small £,, it takes very many available—nonavailable cycles
before the work is finished. The law of large numbers insures
that the finishing time density, which is the sum of these many
periods, will then be tight about its mean. »

If, on the other hand, we let {, — oo, the ratio of the
standard deviation to the mean goes to zero once again. When
t, is large relative 6 £,, the nonavailable periods become
negligible, as if the processors are always available. Again,
the finishing time density becomes very tight about its mean
because nonavailable time periods add little variability to the
finishing time, and under some circumstances we may consider
the finishing time density as an impulse located at t = W/M.
Using the standard multiprocessor example again (M = 100)
with exponential distributions, we find a} = 21.53, and
approximating f(t) as a normal density (discussed below), we
find that 90% of the time, programs requiring 10* min of work
will finish within 7.6 min of the 134.4 min mean finishing time,
which is an interval 3% on either side of the mean. This is
very narrow indeed. If we use Mutka and Livny’s distributions,
then 90% of the time programs finish in an interval 10 min on
either side of the mean, which is still quite narrow.

We find the peak of (33) by taking the derivative with
respect to {,:

(33)

_a_o_f = tn(ta + tn) — 2t4tn (34)
Ota T Wia(ta +t,)?

Setting this equal to 0 yields ¢, = t,, as the peak of the ratio,
at which point it takes on the value o;/f = 1/t,/2W. The
ratio’s value at the peak is small because of our assumption
that ¢, < W. Note that if we assume t, = %,, but not
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Fig. 8. af/? with W = 108, varying t, and t,.
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Fig. 9. Two views of the Brownian motion finishing time densities with
varying 4.

t, < W, then we can make the ratio as large as we want,
simply by increasing ¢,. If, for example, ¢, = ¢, = 1 year,
then either the system is available immediately to do all our
work, or else we will have to wait a very long time before
it even starts. In such a case, the finishing time still has a
reasonable mean but an enormous variance. Another fact to
note is that M, the number of processors, does not affect the
ratio oy /f. Even if we have an infinite number of processors,
we can still have great variance relative to the mean. Of course,
both the mean and the standard deviation go to zero as M
grows, but their ratio remains constant.

In Fig. 8 we plot o4/ f versus ¢, for W = 104, with t, /W
fixed for each curve. Fig. 9 shows finishing time densities
for ¢, = 31.305 min and various ¢,. The z-axis (labeled
“Time, Relative to Mean”) is centered about the mean and
plots the distance relative to the mean (varying from 0.9 times
the mean to 1.1 times the mean). We note that the density
is flattest and has the greatest spread for ¢, = t,; at this
point o¢/f = 0.035, which is quite small. For comparison,
if we use Mutka and Livny’s distributions at the same point,
the ratio is 0.092, which is still small. The narrowing of the
density is also illustrated in Fig. 10. The parameters for both
plots are: exponential distributions with varying ¢, but fixed
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Fig. 10. Finishing time density narrowing as t, grows (top figure) and as
to shrinks (bottom figure).

t, = 31.305 min, M = 100, and W = 10* min. In the top
plot, the density narrows as ¢, = 31.305, 150, 300, and 800
min. In the bottom plot, we have ¢, = 31.305, 10, 3, and 1
min as the density narrows.

E. Normal Approximation to the Finishing Time

The usual form of the central limit theorem states that the
sum of n independent random variables tends to have a normal
distribution as n gets large. Given this, we would expect the

limiting distribution of f(¢) to be normal with mean f and
variance U]%. Let us denote this normal approximation by f(t):

L e-Preed), 35)
A /27r(7]2¢

fo) =

Substituting ¢ = f shows that the finishing time and its normal
approximation coincide at the mean:

B W . 72
() =— =
\/ZWUEW?’/EB ’ V2roy W
o . 7/2
0= 7=~
= f(f).

Observation shows that f(¢) and f(¢) also coincide at two
more points, but analytically these are not easily found because
they are the solutions to a transcendental equation. Numer-
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Fig. 11. Brownian motion finishing ﬁmc pdf and its normal approximation.

ically, we find that these points appear to be separated by

%120?, and the distance from the lower point (smaller ¢) to
t

e mean is very slightly less than half of the total distance
between the two points (varying, but in the range of 49.5%
of the total separation).

We need to know when f (t) is a good approximation for
f(t). Observation (see Fig. 11) shows that the approximation
is good when the mode of the finishing time is close to (within
a few percent of) its mean. We find the mode by taking the
derivative of f(t) with respect to ¢, setting it equal to 0, and
solving for {. We end up with a quadratic equation that has
a negative and a positive root. The positive root is the mode,
namely

1 [9(c?)? . AW?  3q%

— —-

'tmode - 2 1 2

b b

(36)

By using the fact that v/a + b < \/a + Vb, we show that the

mode is always less than or equal to the mean:

Furthermore, if we observe that 9(c2)2 /54 is usually much less

than 4W? /52, and we use the approximation /1 +e~ 1+ 5
for 0 < € < 1, then '

: w 5”_3( _ §f_3_)
mode = T 232 AWS
- 302
~T-3% (7)

Under almost all circumstances, we may drop the negative
term in the parenthesis, because when the Brownian motion

— Brownian Motion

P . .
robability nommal

‘Approximation
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te=91 min.
tn = 31.305 min.
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Fig. 12. Density of finishing time and its lognormal approximation.
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Fig. 13. Density of finishing time.

approximation is valid we also know that W > o3/b, and in
general, W > oy. These would render the term 302/4Wb
negligible. Only under very unusual circumstances would
W % of, and in such cases we could not drop the term.
Excepting such circumstances, (37) is quite accurate for all
conditions in which our Brownian motion model is operative.
Using (37), we find that the percent difference between the
mean and mode is approximately 305/2bW.

F. Lognormal Approximation to Finishing Time

A lognormal density provides a remarkably good approxi-
mation to (21). A lognormal distribution has two parameters,
p and of. If we equate the mean and variance of the finishing
time pdf from the Brownian motion model to that of a
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Fig. 14. Simulation results.

lognormal pdf, then we find that these parameters must be

— 1

w =In(f) — 5012

=In ———%—— (38)
Vos/f +1
ol = ln(a?/?z +1). (39)
The lognormal pdf fit to (21) then becomes
(In(t) - m)z]

(t) = —— exp |——"———]|. 40
=75 -2 (40)

As shown in Fig. 12, when both the Brownian motion finishing
time pdf and the lognormal approximation are plotted, the
densities are extremely close, and the plotted curves appear
to lie on top of each other. When the two do differ, it is under
circumstances where the assumptions of the Brownian motion
model do not hold (e.g. W small relative to all of M, ¢,, and
tn).

G. The Finishing Time Density and its
Derivation from a Normal pdf

We can rewrite the Brownian motion finishing time density,
(21), in a form using a normal pdf. Let ¢, ,2(z) be the
probability density that a random variable, normally distributed
with mean y and variance o2, takes on the value z. Using
this, (21) becomes

£ = 25 3 (W). (41)

The normal pdf term derives from the underlying Brownian
motion; it is the probability that a total of W units of work
have been accumulated by time ¢. As for the weighting factor
of W/t, no intuitive explanation has yet been found for this.
Fig. 13 illustrates the relationship between (21) and (41). In
this figure, the normal pdf of the amount of work done by
time z, %t’agt(z), is plotted with thin lines for various .
The shaded plane in the figure picks out those points on the
normal pdf where = W; the line arcing down (top left to
lower right in the bottom view) within this plane represents

W/t. The other line within the shaded plane is the finishing
time density, i.e., the product of these last two curves. The
curves have been scaled differently to make them fit into one
plot, so relative heights, except within the group of normal
curves, are meaningless.

H. Simulation Results

We ran simulations for the case of exponentially distributed
available and nonavailable periods. Some results comparing
the simulation to the Brownian motion model are shown in
Fig. 14. The Brownian motion model and the simulation agree
very well for large W, as we would expect, and they deviate
as W becomes small.

VI. CONCLUSION

In this paper, we analyzed the distribution of the time to
finish a distributed program running in a network of transient
processors. We first made two analyses of a program running
on a single transient processor. These results were then used
as the basis for a Brownian motion, multiprocessor model,
and from this we found four finishing time distributions: the
actual Brownian motion finishing time distribution, and its
normal, lognormal, and impulse approximations. The models
in this paper offer an approach to predicting performance of
distributed programs on transient processors. By relaxing some
of our assumptions, as discussed below, more sophisticated
models could be derived from those that have been described.

The first assumption that we would like to relax concerns
the asymptotic nature of the results. The results we have
given are valid only over a long period of time. If we have
a relatively small amount of work to do (say, several hours),
then our finishing time distributions are not valid. Their means
are acceptable, but the variance is quite incorrect, and the
distributions (except for the impulse approximation) show
noticeable probability that the program will finish in less
than the minimal time required (W/M). Judging from the
simulation results, there may well be some simple way to
heuristically modify the variance expression in our models so
they provide acceptable results for small W.
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A second assumption we would like to relax concerns our
model of a program. Modeling an algorithm as sequential,
independent stages is very simplistic. Many programs do not
have clear stages, but instead have a more complex internal
precedence structure among the tasks of the program which
cause additional delays. The independent-stages model may
provide a useful simplification, but testing this, and developing
more complicated program models, remains for future work.

A third assumption of great importance is that our network
model does not account for the realities of communications.
Communication entails delay, and our model does not address
this issue. Solutions to this are currently under investigation,
and some possibilities are mentioned in [1].

The models in this paper do have many assumptions, yet
their very simplicity makes them appealing. An alternative
to our models is performability analysis, yet the complexities
of performability models yield only numeric results or a
Laplace transform, and not a direct analytic expression for
the distribution of program completion time. Furthermore, the
basic parameters of our models can be modified to remove
some of the assumptions, and, at least for large W, the models
already do capture the basic behavior of transient, distributed
systems.
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Depth-First Heuristic Search
on a SIMD Machine *

Curt Powley. Chris Ferguson, and Richard E. Korf
Computer Science Department
University of California, Los Angeles
Los Angeles, Ca. 90024
(213)206-5383

July 30, 1991

Abstract

We present a parallel implementation of Iterative-Deepening-A*, -
a depth-first heuristic search, on the single-instruction, multiple-data
(SIMD) Connection Machine. Heuristic search of an irregular tree
represents a new application of SIMD machines. The main technical
challenge is load balancing, and we explore three different techniques
in combination. We also present a simple method for dynamically
determining when to stop searching and start load balancing. We
achieve an efficiency of 67%, for a speedup of 5500, with 8K processors,
and an efficiency of 37%, for a speedup of 9300, with 16K processors.

"This work is supported in part by W. M. Keck Foundation grant number W880615,
NSF Biological Facilities grant number BBS 87 14206, the Defense Advanced Research
Projects Agency under Contract MDA 903-87-C0663, an NSF Presidential Young In-
vestigator Award to the third author, Rockwell International, the Advanced Computing
Facility, Mathematics and Computer Science Division, Argonne National Laboratory, and
by Thinking Machines Corporation.
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searches, or iterations. In each iteration. a branch is cut off when the f(n)
value of the last node on the path exceeds.a cost threshold for that iteration.
The threshold for the first iteration is set to the heuristic value of the initial
state, and each succeeding threshold is set to the minimum f value that
exceeded the previous threshold. Successive iterations continue until a goal
node is chosen for expansion. Since at any point it is performing a depth-first
search, IDA™’s memory requirement is only linear in the solution depth. As
a result, IDA™ can find optimal solutions to the Fifteen Puzzle, but some
problem instances require tens of hours on current uniprocessors, motivating
the use of parallel processing. '

1.2 Parallel Heuristic Search

Parallel processing can dramatically reduce the time of a search algorithm.
There are essentially three different approaches to parallelizing search algo-
rithms. The first is to parallelize the tasks associated with the processing of
individual nodes, such as move generation and heuristic evaluation. This is
the approach taken by HITECH [5] and Deep-Thought[15], both of which use
special-purpose hardware in an eight by eight array to compute chess moves
in parallel. The speedup achievable in this scheme is limited, however, by
the degree of parallelism available in move generation and evaluation. In
addition, this approach is inherently domain-specific, and unlikely to lead to
general techniques for using parallel processors to accelerate search.

A second approach is called parallel window search. This method gives
each processor the entire tree to search, but divides the range of the cost
bounds (windows) among the processors. Parallel window search was origi-
nated by Gerard Baudet [1] for use in searching two-player games trees [24],
but has also been applied to IDA* [27][28][29], where different processors are
assigned different thresholds to search. When a processor completes search-
Ing to its assigned threshold, it then searches the next unassigned threshold.
Unfortunately, this approach is limited by the time to perform the goal iter-
ation. To overcome this limitation, parallel window search can be combined
with node ordering to reduce the time taken by the last iteration.

The third, and perhaps most obvious approach, is tree decomposition.
While parallel window search assigns each processor the entire tree to search,
tree decomposition divides the tree into subtrees, assigning different subtrees
to different processors. In principle, tree decomposition allows the effective
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2 Overview

We first present our basic algorithm, SIDA*, which stands for SIMD IDA*,
The main idea is to divide the tree, and assign different processors to search
different subtrees. By itself, this results in very poor speedup, since in an
irregular tree, some processors will finish searching their subtrees long before
others, and must remain idle while waiting for the others to complete. Thus,
the main challenge is to perform effective load balancing in order to maintain
nearly equal amounts of work on each processor and minimize idle processor
overhead. Load balancing can be used in the initial distribution of nodes
to processors. between successive iterations of an iterative-deepening search,
and also within a particular iteration. Choosing the right times to load bal-
ance is critical to performance, and we present two different load-balance
triggering strategies. We show that overall efficiency can be decomposed
into the product of four different intuitive performance parameters. We then
discuss the results of implementing SIDA* on a Connection Machine for the
Fifteen Puzzle domain, and demonstrate a speedup of 5500 on 8K proces-
sors, and 9300 on 16K processors. Next, we present an analytic model, based
on an exponential distribution of work, and analyze performance as a func-
tion of the load-balancing mechanism. We also compare our work to several
other SIMD tree-search algorithms. Finally, we discuss further work and our
conclusions.

IDA™ is merely one example of a depth-first search of an irregular tree.
Other examples include two-player alpha-beta minimax search, backtracking
for constraint-satisfaction problems, and depth-first branch-and-bound for
combinatorial optimization problems. The techniques presented here are
largely independent of the domain and particular search algorithm, and hence
should be applicable to other depth-first searches as well.

3 Basic algorithm

The basic SIDA* algorithm consists of an initial distribution of frontier nodes
to processors, followed by a series of iterations of IDA*. In each iteration,
each processor independently performs a depth-first search of the subtree
below its frontier node. An iteration is not complete until all processors
have completed their searches. During an iteration, when enough processors




3.2 SIMD Depth-First Search

Once the initial distribution is completed, each processor conducts a depth-
first search of its assigned frontier node. Although processors independently
perform their searches on their own subtrees, they all use the same global
cost threshold. Collectively, the group of processors performs an iteration of
IDA™ on the entire tree, with each processor performing its iteration on its
own subtree. When all subtrees have been explored, the global threshold is
increased for the next iteration of IDA*.

Processors use a stack to represent the current search path in the tree.
If we think of the root of the tree being at the ‘top’, then generating a
state corresponds to moving down the stack, and returning to a previously
generated state in a shallower part of the tree corresponds to ‘backing up’
the stack.

The stack can either contain the sequence of moves associated with the
path, or can contain the sequence of states created by making moves on the
path. The first approach requires only storing the current state in the search.
Generating a new node involves just moving one tilg in this global state. In
backing up, it is necessary to ‘undo’ the previous move by moving the tile
back to its previous location. This approach is analogous to what a person
would do in solving a Fifteen Puzzle by hand.

The second approach is to make a separate copy of each newly generated
state, with the appropriate modification, and place this on the stack. This
approach has the advantage of not requiring a move to be undone when -
backing up the stack. It has the disadvantage of the overhead required to
copy each state. For most problems, it is faster to record an incremental
change to the state, than to copy the entire state, and hence we adopt the
former approach.

Unfortunately, the trees generated by almost all heuristic searches have
irregular branching factors and depths. This means that during the search
phase, each processor will have a different size subtree to search, and once
a processor completes its search, it must wait for all other processors to
complete, before beginning the next iteration. This results in tremendous
idle-processor overhead, since the variation in the sizes of the individual sub-
trees is enormous in practice. Thus, load balancing is necessary to effectively
use a large number of processors, and is a central focus of this research.




set of nodes of minimum f value are expanded in parallel. The threshold
for the first iteration of the search phase is set to the minimum f value of
all the frontier nodes at the end of the distribution phase. Those processors
assigned nodes whose f value is greater than the minimum do not initially
participate in the first search phase, and only become active after the first
load balance.

Since the distribution phase is done only once during the start of the
search, regardless of how accurately the load is balanced during this phase,
the loads will become unbalanced as the search progresses through multiple
iterations.

4.2 Load Balancing Between Iterations

After each iteration of the search phase is completed, there is another oppor-
tunity for load balancing, based on information collected during the previous
iteration. In particular, the actual number of nodes expanded below each
frontier node during the last iteration, the load of that node, is a lower bound
on the number that must be expanded on the next iteration. Furthermore, in
the absence of any further information, we expect the relative loads of differ-
ent frontier nodes to remain reasonably stable from one iteration to the next.
In other words, a node with a relatively heavy load during one iteration is
likely to have a relatively heavy load during the next iteration as well. Given
this assumption, we would like to reallocate processors to frontier nodes so
that lightly loaded nodes lose their processors to more heavily loaded ones.

The challenge is to accomplish this reallocation while maintaining the
one-to-one correspondence between frontier nodes and processors. Consider
a frontier node that was relatively lightly loaded on the last iteration, and
whose brothers were also lightly loaded. We can contract this node by dis-
carding the children, and making the parent a frontier node. One of the
processors assigned to the children is then assigned to the parent, and the
remaining processors are free to be assigned elsewhere. Node contraction was
introduced by Chakrabarti et al [2], to save memory in a serial version of A*,
and also used by Evett et al [7] in a SIMD version of A*.

Now consider a node that was relatively heavily loaded on the last it-
eration. It is expanded, generating its children. The parent now becomes
an interior node, and the processor assigned to the parent is reassigned to
one of the children. The remaining children are assigned processors from the




processor writes its processor ID to a location associated with its sequence
number in the list, which is then read by the active processor with the same
numbering in its list. As a result, each active processor obtains the ID of
a unique free processor to send work to. The processors are arranged in
a hypercube communication network, and the time to transfer work is a
function of how many hops through the network the work must travel. The
rendezvous allocation method is global in that there is no consideration of
matching processors that are logically close in the network. An alternative
approach is to consider locality in the hope of reducing communication costs
(3].

When the number of processors with work to share exceeds the number of
free processors, priority is given to processors transferring nodes with lower
f values. The reason is that nodes with lower f values are expected to have
larger subtrees associated with them.

Work that is shared within iterations represents only a temporary reas-
signment of nodes to processors, and does not change the allocation of frontier
nodes to processors that was in effect at the beginning of the iteration.

After the load balancing is complete, the searth phase resumes, until
enough processors become idle again to justify another phase of load balanc-
ing. Thus, each iteration consists of an alternating sequence of search and
load balancing phases.

5 When To Load Balance

An important problem is determining when to trigger load balancing. If
load balancing is performed too frequently, then a large load balancing cost
is incurred. If load balancing is not performed frequently enough, then low
utilization will result. We discusses two solutions to this problem.

5.1 Constant Triggering

The simplest approach is to set a constant load-balance trigger X, between
0 and 1. After the initial work distribution, all P processors run until the
number of processors remaining active drops to X * P, meaning (1 — X)
P processors have become idle. When this trigger X is reached, a load
balancing phase takes place in which some of the work on the busy processors
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respect to t. and setting it to 0.

W) W) w W(t)
——— = WD, W)
dtt+ L~ Z(t+ L) el 0T irp = W@

W7(t), the derivative of W (t), is the instantaneous rate at which work is being
done by the system at time ¢, which is just the number of active processors at
time ¢, or A(¢). Thus, the average rate of work over the current search/load
balance cycle is maximized by load balancing when W(t)/(t + L) = A(t).
Since A(t) changes discretely, load balancing should be performed as soon as
W(t)/(t+ L) > A(¢).

This dynamic triggering equation is quite general, and should apply to any
problem where work and load balancing must be performed in distinct phases.
By greedily optimizing the rate of work over each search/load balancing
cycle, we hope to choose nearly optimal times for load balancing. Since the
variables in the equation are easily computed by the program, this trigger
is straightforward to implement. Most importantly however, this triggering
mechanism automatically adjusts itself to any size problem, and to different
stages within a single problem. s

Figure 1 shows actual data for the way in which the number of active
processors varies over time, using this dynamic trigger for an iteration of the
Fifteen puzzle in which 94 million node generations were performed. The time
to do load balancing is not shown. The area under the curve represents the
total work done. Note that as the iteration progresses, the load-balancing
trigger, which is the bottom envelope of the curve, decreases as expected.
When there is less work remaining, the number of active processors drops off
faster, and the trigger waits for sufficient work to be done before investing
in another load balance. Also note that towards the end of the iteration, the
final load balances do not reactivate all the processors. The reason is that
there are not enough nodes on the tops of the stacks of the active processors
to supply all the idle processors.

6 Measures of Performance

Before describing our experimental results, we describe our speedup and effi-
ciency measures, and factor efficiency into four different components. These
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measures apply to any SIMD applications that require load-balancing. Per-
formance can be measured over any desired interval, such as the distribution
phase. during a single iteration, over an entire problem, or over a group of
problems. Hence, in the following discussion the term ‘problem’ can refer to
part of a problem, an entire problem, or multiple problems.

6.1 Speedup and Efficiency

Our primary measure of performance is speedup, S, which is the time that
would be required by the most efficient version of serial IDA* running on
one processor, I7p4, divided by the time required by our parallel algorithm
to solve a problem using P processors, T. To save years of computation,
we estimated the sequential time by running an efficient IDA* program on
a single Connection Machine processor, for an entire iteration of a single
problem. The work done, W;p4, measured in node generations, divided by
the time, T;p4, gives the IDA* work rate, Wjp,. The ‘prime’ in Wi, ,
reflects that it is the rate of work per unit time. _

Efficiency, E, is simply speedup divided by th& number of processors,
P. Since we are interested in knowing what factors contribute to overall
efficiency, we divide efficiency into four components: raw speed ratio, fraction
of time working, utilization, and work ratio. Besides providing valuable
information, calculation of these factors provides a redundant check on the
correctness of the efficiency calculation. We discuss each of these four factors
in turn, then show that their product equals efficiency.

6.2 Raw Speed Ratio

The raw speed ratio reflects the fact that a single active processor in the
parallel algorithm, SIDA*, performs work at a slower rate than a single CM
processor executing serial IDA*. The main reason for this is the overhead of
conditional statements on a SIMD machine. Since all processors must execute
the same instruction, to execute a conditional, all processors choosing the first
branch execute it, while the remaining processors are idle, and then those
choosing the second branch execute it, while the first group is idle. Thus,
the time to execute a conditional statement on a SIMD machine is the sum
of the times to execute each branch, rather than a weighted average, as on a
serial or MIMD machine.
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6.5 Work Ratio

One final factor that affects performance is that the total work done by the
serial and parallel algorithms may be different. On iterations prior to the
goal iteration. both algorithms generate approximately the same number of
nodes. The numbers are not exactly equal because the serial algorithm must
start each of it its depth-first searches from the root node, whereas in the
parallel algorithm each processor starts from a frontier node. This difference
is insignificant in all but the easiest problems. '

The final iteration, however, terminates as soon as a goal node is chosen
for expansion. Depending on the order in which nodes are generated, and
the location of the goal nodes, either the serial or the parallel algorithm may
explore more total nodes on the final iteration. We will argue in section 7.2
that for this application, this effect should not be included in the efficiency,
but is important in other applications.

The work ratio, N, is defined as the total work done by the serial al-
gorithm, Wip4, divided by the total work done by the parallel algorithm,
w. -

.« -

N = Work Ratio = %24

6.6 Effect bf Initial Distribution

The initial distribution of work to processors is a source of inefficiency which
is indirectly included in several of the above factors. First, the raw speed
ratio is lower during distribution because node generations require commu-
nication across processors to transmit states. Second, utilization is lower
during distribution because it is impossible to obtain 100% utilization when
the machine is being filled with work.
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7 Empirical Results

We implemented SIDA™ with the dynamic trigger of section 5.2 on a 16K
processor Connection Machine 2 (CM2) [14], and ran all 100 Fifteen Puzzle
problem instances from [18]. The speedups tend to be smaller on the easier
problems, since they can’t make full use of 16K processors, and the time
of the distribution phase becomes significant. In computing the parameters
derived in section 6, we treat all 100 problems as if they were a single large
problem. This has the effect of weighting the difficult problems more heavily
than the easy ones, which is appropriate since most of the time is spent
solving the harder problems.

7 .1 Overall Results

Using this approach, the speedup over all 100 problems on 16K processors
was about 7800, which corresponds to an efficiency of almost 48%. A total of
Wipa = 36 billion nodes were generated by serial IDA*[18]. Dividing this by
the node generation rate of IDA* on one CM procéssor, Wips = 118 nodes
per second, gives an estimated total time for IDA* of Typs = 84,746 hours,
or 9.7 years! The total time taken by SIDA* to do all 100 problems using
16K processors was T' = 10.8 hours. The speedup is therefore S = Typs/T =
7800.

The average and median times to solve a single problem instance were
6.5 and 2.1 minutes, respectively, while the average and median number of
node generations were 430,780,150 and 59,512,527, respectively.

The overall efficiency is the product of a raw speed ratio of .772, fraction
of time working of .879, processor utilization of .839, and work ratio of .836.

The initial distribution phase requires about 33 seconds with 16K proces-
sors, and its effect on these factors is insignificant on the hardest problems,
since it occurs once for each problem instance, and only accounts for a tiny
fraction of the total node generations.

The .879 fraction of time working indicates that 12% of the total time
was spent load balancing. 1.7% of the total time was spent on load balancing
between iterations, taking about 6.7 seconds per iteration. This overhead is
negligible since it consists of a small constant amount of work per iteration,
and the number of iterations grows linearly with problem difficulty, while
node generations grow exponentially. The rest of the load balancing time is
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among the virtual processors. Therefore, regardless of whether the observed
value of the work ratio is due to noise, or is consistently greater than one,
the work ratio should be discounted in the efficiency measure, by setting it
to one. If we set the work ratio to one, then the efficiency becomes almost
57% on 16K processors, which is the product of the remaining three factors.
This is a more accurate measure of the performance of SIDA*, and thus we
refer to the overall efficiency as 57%, with a corresponding speedup of over
9300. Note that in other applications, such as alpha-beta search, any parallel
algorithm must search more nodes than the serial algorithm, and hence in
these applications the work ratio must be taken into account.

Our speedup is on the order of four orders of magnitude with 16K proces-
sors. This is relative to IDA* running on one Connection Machine processor,
which is about three orders of magnitude slower than current workstations,
yielding a performance improvement relative to a high-performance worksta-
tion of about an order of magnitude.

7.3 Scalability

«

Next, we consider how our results scale as the number of processors in-
creases. Ideally, efficiency would remain constant as the number of proces-
sors increases. In practice, however, for a given problem, as the machine gets
larger, efficiency decreases somewhat because there is not enough work to
utilize all the processors. Conversely, for a given size machine, as a problem
gets harder, utilization increases, a smaller percentage of time is spent load
balancing, and efficiency increases.

To illustrate this, we picked a sample of problems of varying difficulty.
We ordered the problems of [18] by increasing nodes generated, and picked
problems 1, 25, 50, 70, and 90 in that ordering. These corresponds to problem
numbers 79, 81, 41, 98, and 63, respectively, of [18]. We solved each problem
using from 2K to 16K processors in 2K increments, and plotted speedup
versus number of processors for each problem in figure 2.

In general, the harder the problem, the greater the speedup for a given
number of processors. This implies that larger machines will be more cost
effective on harder problems than on easier problems, as expected. The
Connection Machine, for example, is currently available with up to 64K pro-
CEesSOrs.

We also ran all 100 problems on 8K processors. Counting them all as
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one task, efficiency increased from 57% to 67% when going from 16K to 8K
processors, based on a raw speed ratio of .846, a fraction of time searching of
.936, and a utilization of .848. The work ratio, which is not included in the
speedup. was .709. On the hardest problem, efficiency was 74% on either 8K
or 16K processors. Of course, if a problem is too hard, even high efficiency
may not be sufficient if the elapsed time is unacceptably long.

8 An Analytic Model

In order to evaluate these results and compare various load balancing strate-
gies. an analytic model for how work is distributed and shared during an
iteration of a typical parallel tree search algorithm is presented. Initially,
each of P processors has an amount of work to do which is independently
chosen from an exponential distribution function with a mean of M seconds:
e~*/M_ The exponential is chosen as the work distribution because it is an-
alytically tractable, thus allowing us to generate the optimal load balancing
algorithm and compare its performance with that of other-load balancing
schemes. Work is allowed to progress, with processors that finish their work
becoming idle, until a load balancing phase is begun. The load balancing
phase takes L seconds, after which all processors are reactivated. When load
balancing occurs with less than half the processors are busy, it will take more
than one communication to reactivate all the processors, since a single pro-
cessor can only send work to one idle processor at any given time. Therefore,
L actually goes up when fewer processors are active. This is not taken into
account in our model, but will only effect the tail end of most problems, since
load balancing is generally triggered with more than half the processors still
active (see Figure 1).

After load balancing, the amount of work on each of the P processors
again comes from an exponential distribution. However, the mean of the new
distribution must be chosen to reflect the fact that there is now less total
work remaining. The memoryless property of the exponential makes this
particularly convenient. If the amount of work on a processor comes from an
exponential distribution, then the expected completion time of the processor
is independent of how long the processor has been running. Initially, the P
processors each have an expected amount of work of M seconds, resulting
in an expected total amount of work of M * P. Load balancing begins with
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load balances performed. If B is 0, the run time is approximately M *log(P)
[17].

To find the minimum run time if exactly one load balance is used, we must
compute the optimal trigger X at which to perform the only load balance.
For B = 1, the expected run time, not counting the load balance, if we
trigger when X * P processors remain busy, is the time until the first load
balance plus the completion time. The time until the first load balance will
be the time for the completion of the first P+ (1 — X) of P exponentials with
mean M, which is approximately M xlog(1/X) [17]. Since the work on each
processor 1s reduced to M * X after load balancing, the completion time is
approximately M * X *log(P). This yields a total search time, not counting
load balancing, of

M xlog(1/X) + M x X *log(P)

To find the optimal trigger X in the case where a single load balance is
used, we must minimize the value of this equation for X. To do this we take
the derivative with respect to X and set it to 0: &« -

M/X + M«+log(P)=0= X =1/log(P

Plugging this back into the equation for time, we find that the minimum run
time for 1 load balance is :

M xloglog(P) + M *log(P)/log(P) =

M xloglog(P) + M = M « (loglog(P) + 1)

Now let M * Zg(P) be the run time not counting load balances for B
optimally performed load balances, running on P processors, each with an
expected amount of work of M seconds. We will show by induction on
B that Zg(P) is independent of M. The base cases are Zo(P) = log(P)
and Z;(P) = loglog(P) + 1. The amount of time taken if : + 1 optimal
load balances are performed is the time to reach the first optimal trigger
X, M xlog(1/X), plus the completion time for i optimally performed load
balances on a work distribution with a mean of X * M seconds. Using the

assumption that Z is independent of the mean of the work distribution, the
second term is X * M * Z;(P). The total time taken is thus
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efficiency as halving the number of processors, since the amount of work per
processor doubles in either case. For small problems, which result in low ef-
ficiency, the amount of work Per processor can be increased by reducing the
number of processors. Low efficiency tells us that the problem is too small for
the number of processors used, and reducing the number of processors may
not greatly affect the time taken by the algorithm because of the increased
efliciency.

The three best approaches all perform very well, however, both the opti-
mal load balancing formula and the optimal constant triggering formula rely
on the fact that the distribution of work associated with each processor is
drawn from an exponential distribution with a known mean. The dynamic
triggering formula, however, does not make this assumption, and thus is more
general.

Figure 5 compares a line representing the simulated results for the model
of dynamic load balancing (sections 8 and 5.2) with data points representing
the efficiency of SIDA* with 16K processors on all 100 Fifteen Puzzle problem
instances.

The main reason that the results do not matcly the model very well is
that the model makes the optimistic assumption that the workload comes
from an exponential distribution. Furthermore, this distribution may change
over the course of a solution as load balancing is performed, thus decaying
even further from exponential. Another reason is that the model computes
efficiencies for a single iteration as opposed to the multiple iterations of an
iterative-deepening search.

9 Related Work

Related work on SIMD search includes our own preliminary work, a best-first
algorithm based on A*, a another depth-first algorithm based on IDA*, and
a brute-force depth-first search.

Preliminary results of our current effort appeared in [25] and [26], which
describes the overall structure of our algorithm, together with an implemen-
tation of the distribution and search phases, including load balancing during
the distribution phase.
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9.2 IDPS

IDPS (Iterative-Deepening Parallel Search) [20] is a SIMD search algorithm
based on IDA™, also using the Fifteen Puzzle domain, and developed con-
currently with SIDA*. Like SIDA*, it uses an initial heuristic distribution
of nodes to processors, followed by alternating phases of search and load
balancing.

 There are several differences between IDPS and SIDA*. SIDA* generates
nodes by making changes to a single copy of the state, and maintains the
structure of the search tree, whereas IDPS generates new nodes by copying
the entire state, and discards a parent node after all its children have been
generated. It keeps track of the solution by storing the moves made with
each child node. In addition. IDPS passes multiple independent nodes to a
single processor during load balancing, while SIDA* only passes single nodes,
or children of the same parent. Finally, IDPS does not perform between-
iteration load balancing, and performs within-iteration load balancing as
soon as any processor becomes idle.

Mahanti and Daniels [20] report an overall efficiency of 76% on 16K pro-
cessors, and 92% for 8K processors, based on the same 100 problems from
[18]. These values are not directly comparable to our corresponding effi-
ciencies of 57% and 67%, however, for several reasons. The first is that
they include the work ratio in their efficiency measure. In fact, they achieve
an average superlinear speedup (efficiency greater than 100%) for problems
larger than 20 million node generations, which requires a work ratio greater
than one. The second difference is that our speed is based on a serial IDA*
speed of 118 nodes per second, whereas the speedup of IDPS is based on a
serial IDA* speed of 59 nodes per second, on the same machine[21]. How-
ever, some of the optimizations in our IDA* code may apply to IDPS as well,
without effecting its efficiency. While we don’t have timing data on IDPS
for 16K processors, the two programs took roughly the same amount of time
(21.66 hours for SIDA* vs. 22.56 hours for IDPS) to solve all 100 problem
instances on 8K processors, despite the fact that, due to a low work ratio,
SIDA* generated over 30% more nodes[21].




pha and beta bounds that are produced by the search of one subtree effect
the efficiency of searching later subtrees. As a result, these bounds must be
propagated throughout the tree, and a parallel algorithm will do more work
than a serial algorithm.

Another example in this class of algorithms is depth-first branch-and-
bound for combinatorial optimization problems, such as the traveling sales-
man problem. Since SIDA* maintains the internal structure of the tree, it
should be extensible to branch-and-bound algorithms as well.

11 Conclusions

SIDA™ achieves an efliciency of 67%, for a speedup of over 5500 on 8K pro-
cessors, and 37%, for a speedup of over 9300 with 16K processors on the
Fifteen Puzzle. This demonstrates that SIMD machines can be effectively
used to search irregular, dynamically generated trees. As SIMD machines
increase in size and speed relative to uniprocessors, their use for heuristic
search applications should become increasingly costeeffective.

The more general approach of alternating phases of work followed by load
balancing should apply to other irregular computations on a SIMD machine,
such as Monte-Carlo methods[12]. We present a very general technique for
deciding when to halt work and begin load balancing. This dynamic load-
balancing trigger is simple to compute, makes locally greedy decisions, and
achieved relatively high overall utilization with modest overhead in our ex-
periments.
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p3 100 67880056 51065359 2.1 0.495 0.652 0.644 1.329 0.208
59 99 83477694 60664396 2.3 0.536 0.634 0.663 1.376 0.225
60 44 95733125 58844809 2.1 0.541 0.652 0.681 1.627 0.240
61 25 100734844 113108217 2.9 0.637 0.706 0.747 0.891 0.336
62 84 106074303 156836306 3.3 0.700 0.748 0.785 0.676 0.411
63 69 109562359 59512527 2.5 0.470 0.660 0.658 1.841 0.204
64 29 117076111 138153686 3.4 0.638 0.728 0.743 0.847 0.345
65 76 126638417 337475877 5.8 0.762 0.818 0.802 0.375 0.501
66 80 132945856 135550244 3.3 0.615 0.783 0.742 0.981 0.358
67 11 150346072 43724410 1.9 0.498 0.633 0.638 3.438 0.201
68 70 151042571 190221310 3.9 0.686 0.767 0.790 0.794 0.416
69 89 166571097 78899335 2.6 0.528 0.693 0.706 2.111 0.258
70 98 183526883 223791797 4.4 0.706 0.778 0.797 0.820 0.438
71 10 138758703 231574183 4.5 0.712 0.783 0.789 0.858 0.441
72 54 220374385 222102072 4.4 0.707 0.775 0.793 0.992 0.435
73 26 226668645 264329624 5.0 0.749 0.767 0.782 0.858 0.449
74 67 252783878 387048354 7.3 0.684 0.895 0.744 0.653 0.455
75 21 257064810 228854282 4.3 0.720 0.811 0.787 1.123 0.459
76 64 260054152 146886788 3.3 0.689 0.731 0.767 1.770 0.386
77 1 276361933 252918505 4.7 0.742 0.789 0.794 1.093 0.465
78 37 280078791 420269004 7.0 0.778 0.813 0.815 0.666 0.517
79 27 306123421 222661611 4.5 0.699 0.764 0.792 1.375 0.423
80 52 377141881 492677454 7.5 0.792 0.859 0.830 0.765 0.565
81 7 387138094 318081544 5.5 0.756 0.824 0.805 1.217 0.501
82 53 465225698 1302507835 18.0 0.815 0.911 0.837 0.357 0.622
83 33 480637867 314891988 5.7 0.755 0.790 0.803 1.526 0.479
84 15 543598067 491131113 7.8 0.782 0.835 0.826 1.107 0.539
85 3 565994203 439740204 7.4 0.781 0.827 0.786 1.287 0.508
86 91 602886858 791090780 11.3 0.818 0.882 0.835 0.762 0.602
87 17 607399560 467618099 7.5 0.764 0.843 0.827 1.299 0.533
88 32 661041936 168889240 3.8 0.691 0.744 0.749 3.914 0.385
89 22 750746755 633205198 9.3 0.802 0.876 '0.831 1.186 0.583
90 63 995472712 455660892 8.0 0.786 0.796 0.782 2.185 0.490
91 72 1031641140 1395384280 19.1 0.824 0.908 0.842 0.739 0.631
92 92 1101072541 976975496 13.9 0.828 0.880 0.829 1.127 0.604
93 56 1199487996 1188535843 16.0 0.826 0.905 0.853 1.009 0.638
94 59 1207520464 1198818106 16.4 0.835 0.897 0.837 1.007 0.628
95 14 1369596778 1055837119 14.6 0.824 0.897 0.842 1.297 0.623
96 49 1809933698 2259207595 27.0 0.847 0.945 0.899 0.801 0.720
97 66 1957191378 1396015331 18.4 0.829 0.919 0.854 1.402 0.650
98 60 3337690331 2284080022 30.3 0.835 0.932 0.834 1.461 0.649
99 82 5506801123 7648036961 88.0 0.859 0.977 0.890 0.720 0.747
100 88 6009130748 12003614428 141.0 0.850 0.983 0.876 0.501 0.731
TOTALS 35991891900 43078015000 649.4 0.772 0.879 0.839 0.836 0.569
dn pn W(IDA) W R F U N E/N
Key
dn. problem number ordered by difficulty of ({[Kor85]
pn. problem number of ([Kor85].
W(IDA) nodes generated by serial IDA¥*.
W nodes generated by SIDA*.
T elapsed time of SIDA*,
R raw speed ratio.
F fraction of time working.
U utilization.
N work ratio, ratio of serial to parallel nodes generated.
E/N efficiency without work ratio, E/N = R*F*U.

(totals count all 100 problem instances as one large problem)
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